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In this study, 53 middle school teachers and 28 prospective secondary school teachers worked
either individually or in pairs to pose mathematical problems associated with a reasonably com-
plex task setting, before and during or after attempting to solve a problem within that task set-
ting. Written responses were examined to determine the kinds of problems posed in this task set-
ting, to make inferences about cognitive processes used to generate the problems, and to examine
differences between problems posed prior to solving the problem and those posed during or after
solving. Although some responses were ill-posed or poorly stated problems, subjects generated
a large number of reasonable problems during both problem-posing phases, thereby suggesting
that these teachers and prospective teachers had some personal capacity for mathematical prob-
lem posing. Subjects posed problems using both affirming and negating processes; that is, not only
by generating goal statements while keeping problem constraints fixed but also by manipulating
.the task’s implicit assumptions and initial conditions. A sizable portion of the posed problems were
produced in clusters of related problems, thereby suggesting systematic problem generation. Subjects
posed more problems before problem solving than during or after problem solving, and they tended
to shift the focus of their posing between posing phases based at least in part on the intervening
problem-solving experience. Moreover, the posed problems were not always ones that subjects
could solve, nor were they always problems with “nice” mathematical solutions. '

Problem posing is of central importance in the discipline of mathematics and in the
nature of mathematical thinking. Some distinguished leaders in mathematics and math- .
ematics education (e.g., Freudenthal, 1973; Poly4, 1954) have identified problem pos- -
ing as an important part of a student’s mathematical experience, and documents pro-
moting curricular and pedagogical innovation in mathematics education (National Council
of Teachers of Mathematics [NCTM], 1989, 1991) have recently called for an
increased emphasis on problem-posing activities in the mathematics classroom. For
example, the NCTM Curriculum and Evaluation Standards for School Mathematics
(1989) advocates that students be given increased opportunities for “investigating and
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formulating questions from problem situations” (p. 70), and refers explicitly to problem
posing by arguing that “students should also have some experience recognizing and for-
mulating their own problems, an activity which is at the heart of doing mathematics”
(p. 138). Included in the Professional Standards for Teaching Mathematics (1991) is
the idea that “students should be given opportunities to formulate problems from given
situations and create new problems by modifying the conditions of a given problem”
(p. 95). Despite the importance of problem posing as a form of mathematical activity,
and despite interest in its use as an instructional activity, there has been little system-
atic investigation of mathematical problem posing as a cognitive process involving gen-
erating a problem from a situation or an experience.

The term “problem posing™ has been used to refer both to the generation of new
problems and to the reformulation of given problems (Silver, 1994). One kind of
problem posing, usually referred to as problem formulation or reformulation,
occurs within the process of solving a complex problem when a solver restates or
recreates a given problem in some way to make it more accessible for solution. This
is the form of problem posing that prompted Duncker (1945) to’¢comment about 50
years ago that problem solving consists of successive reformulations of an initial
problem. Since that time, problem formulation has been extensively studied by researchers
interested in understanding complex problem solving, and it has become increas-
ingly common to view problem solving as a process involving establishing a
series of successively more refined problem representations that incorporate rela-
tionships between the given information and the desired goal, and into which
new information is added as subgoals are satisfied. In fact, one of the major find-
ings of an extensive body of research on the differences between experts and novices
in a variety of complex task domains is that experts tend to spend considerable time
engaging in problem formulation and reformulation, usually engaging in qualita-
tive rather than quantitative analysis, in contrast to novices who spend relatively
little time in formulation and reformulation (Silver & Marshall, 1989).

When the term problem posing is used in contemporary mathemnatics education reform
documents (e.g., NCTM, 1989, 1991), however, it usually refers to a somewhat dif-
ferent kind of activity, in which problem posing itself is the focus of attention. In this
case, the goal is not the solution of a given problem but the creation of a new problem
from a situation or experience. Such problem posing can occur prior to any problem
solving, as would be the case if problems were generated from a contrived or naturalistic
situation. This type of problem generation is also sometimes referred to as problem for-
mulation, but the process being described here is different from the reformulation that
occurs within complex problem solving itself. Problem posing can also occur after solv-
ing a particular problem, when one might examine the conditions of the problem to
generate alternative related problems. This latter form of problem posing is associated
with the “Looking Back” phase of problem solving discussed by Poly4 (1957).

Although the forms of activity being advocated in current calls for mathematics
instructional reform have been subjected to far less research scrutiny than has the
process of problem reformulation within problem solving, some interesting instructional
explorations involving problem posing have been undertaken (e.g., Brown & Walter, 1990;
Hashimoto, 1987; Healy, 1993; Keil, 1965; Skinner, 1991; van den Brink, 1987,
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Winograd, 1991). For example, Brown and Walter (1990) have written extensively about
~ aversion of problem posing in which problem conditions and constraints are examined
and manipulated through a process they refer to as “What-if-not?” These explorations
have suggested some productive approaches toward the integration of problem posing
into mathematics classroom instruction but that there has been almost no systernatic research
conducted on mathematical problem posing as it occurs prior to or after problem
solving, and little is known about the nature of problem posing as a cognitive process
(Kilpatrick, 1987). Therefore, this exploratory study was undertaken to provide some
information about the nature of problem posing as a complex cognitive process.

Two basic questions were explored in this study: What are the kinds of problems
posed by people within a reasonably complex task setting? What are the differences,
if any, between the kinds of problems people pose in that setting prior to solving
a problem embedded in that setting and the kinds of problems posed in the setting
during or after solving the problem? In order to illuminate mathematical problem-
posing processes, it would have been reasonable to conduct interviews with a few
selected subjects and to analyze their verbal protocols. However, when we found
that it would be possible to collect data from a large number of subjects, we chose
to have subjects respond in writing rather than in interview settings. Furthermore,
because others have used written data successfully to uncover cognitive process infor-
mation about mathematical problem solving (e.g., Hall, Kibler, Wenger, & Truxaw, -
1989), we decided that it would be appropriate to use paper-and-pencil data here
as the basis for an analysis of mathematical problem posing.

The subjects in this investigation were in-service middle school mathematics teach-
-ers and preservice secondary school mathematics teachers. Because current reform
documents have suggested the importance of problem posing, and because this type
of activity has not been a feature of conventional mathematics instruction, it
seemed reasonable to examine the capacity of teachers themselves to engage in the
process of problem posing. If actual and prospective teachers exhibit a generative
capacity in their own mathematical activity, then it is reasonable to expect that a
lack of personal competence will not be a major obstacle to their incorporating prob-
lem-posing activities into their teaching.

METHOD

Subjects

The subjects were 53 middle school mathematics teachers and 28 preservice sec-
ondary school mathematics teachers. The middle school teachers were participants
in a week-long mathematics teaching workshop sponsored by their school district in
Summer 1988; their formal mathematics background ranged from having an under-
graduate degree in mathematics (one teacher) to having almost no formal college-level
mathematics coursework (12 teachers), and their teaching experience ranged from 2
years to more than 20 years. The preservice secondary mathematics teachers were enrolled
in a mathematics teaching methods course at a public university in Fall 1989; all had
recently completed substantial coursework in mathematics (essentially an undergraduate
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major). Given the nature of the performance studied here, the differences between
the two groups in the extent and recency of their subject-matter knowledge and in
their teaching experience were thought to be of offsetting importance in influenc-
ing performance. That is, although differences in formal subject-matter knowledge
and in the recent study of mathematics favored the preservice secondary teachers,
the specific requirements of the task used in this study were closely aligned with
the mathematics content commonly taught in middle school rather than that typi-
cally studied in college. Thus, results are reported here only for the aggregated sam-
ple. A report of preliminary analyses of data obtained from the middle school teacher
sample is provided by Silver and Mamona (1989).

The Task and Administration

The Billiard Ball Mathematics (BBM) task consisted of three parts, each of which
is shown in Figure 1. The BBM task was presented to all subjects in exactly the same
way. In the first and third parts, subjects were asked to pose problems related to a task
setting in which a billiard ball is projected from the lower left corner of a rectangular
table at an angle of 45° to the sides; in the middle part of the task, they were asked to
solve a particular nontrivial problem related to this task environment. Subjects com-
pleted all parts of the BBM task in 45 minutes. They were given 10 minutes to gen-
erate problems in the first phase, Initial Posing (IP), and 30 minutes to solve the prob-

- lem in the second phase, Problem Solving (PS). The final phase, Additional Posing (AP),

coincided with the 30-minute PS phase, during which time subjects recorded problems

~ generated during problem solving, and an additional 5 minutes after the PS phase, dur-

ing which time they could generate additional problems related to the task setting.

The BBM task was adapted for use as a problem-posing and problem-solving task
from versions that exist in published sources for use as a problem-solving task with
middle school students (e.g., the “Paper Pool Activity” in Fitzgerald, Winter,
Lappan, & Phillips, 1986) and with secondary school and college students (e. g., the
pool table problem in Jacobs, 1970). The task was thought to be an environment rich
enough to permit the posing of interesting problems and conjectures, yet one in which
the required problem solving would be possible, because it required only knowledge
of rather simple mathematical concepts (e.g., factors, multiples, ratios).

Each subject either worked on the BBM task individually or as a member of a pair.
Of the 53 middle school teachers, 25 worked individually and 28 worked in 14 pairs. Of
the 28 preservice secondary teachers, 8 worked individually and 20 worked in 10 pairs.

RESULTS

A total of 399 responses were generated in the problem-posing phases (IP and AP)
of the BBM task. In examining the nature of a subject’s response, the written
response was considered along with any accompanying diagrams or drawings
made on accompanying pages. Because this report is concerned with mathematical
problem posing, only the results for the two problem-posing phases (IP and AP) are
presented in detail here. Results for the problem-solving phase (PS) are mentioned
only briefly as they relate to interpreting the problem-posing findings.



(Part 1)

Imagine billiard ball tables like the ones shown below. Suppose a ball is shot
at a 45° angle from the lower left corner (A) of the table. When the ball hits a
~ side of the table, it bounces off at a 45° angle.

In each of the examples shown below, the ball hits the sides several times
and then eventually lands in a corner pocket. In Example 1, the ball travels
on a 6-by-4 table and ends up in pocket D, after 3 hits on the sides. In

Example 2, the ball travels on a 4-by-2 table and ends up in pocket B, after
1 hit on the sides.

D C

Look at the examples, think about the situation for tables of other sizes, and
write down any questions or problems that occur to you.

(Part 2)

[NOTE: The first two ,oaragraphé and the exémp/és fromr-IP-phase-repeated]

Look at the examples, think about the situation for tables of other sizes,
consider as many examples as you need, and try to predict the final
destination of the ball. That is, when will the ball land in pocket A? When will
it land in pocket B? In pocket C? In pocket D?

(Part 3)

As you work out your solution to the problem, other questions may also
come to mind. In the space provided below, write down any questions or
problems that occur to you. '

Figure 1. The billiard ball mathematics (BBM) task.
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Initial Examination of Posed Problems

Most of the subjects’ responses were expressed as problems or questions regard-
ing the path or destination of the billiard ball on tables of varying sizes, the effect of
varying the task’s given conditions, or the underlying assumptions of the task. The
following are representative of these types of responses: “If the table dimensions were
decreased by 2, will the number of hits decrease by 27 “Would the ball end up in pocket
C if the table were square?” “What is the pocket and number of hits for a 6 x 3 table?”

““What would happen if the angle were different, like 60°?” More than 60% of the responses

were stated clearly as problems or questions, expressed as complete or nearly complete
sentences, with a connection to the BBM task.

Another set of responses (about 25% of the total) were expressed not in the form
of questions but rather in the form of conjectures. Responses such as the follow-
ing are representative of the kinds of conjectures generated by subjects: “The larger
the table, perhaps the more bounces off the side.” “It seems that the ball will end

~up in the pocket in a + b —2 ricochets on an an X bn table, provided a and b are rel-

atively prime.” “Square tables take zero hits on the sides.” “Table sizes and hits are
related proportionally.” “Size of table is not a factor.” As can be seen from these
examples, conjectures were sometimes stated in a tentative form and sometimes as
definitive assertions (though not always correct, because “Size of table is not a fac-
tor” is clearly a false assertion). Nevertheless, these statements were treated as appro-
priate responses to the BBM task request to generate questions or problems related

 to the situation, because each assertion can be taken to represent an implicitly stated

problem that either was or could be investigated further.

The remaining responses (about 15%) were judged not to be appropriate
responses to the BBM task, and these responses were eliminated from further con-
sideration. Some of these eliminated responses may have represented reasonable
thinking on the part of the subject, but the written information was far too ambigu-
ous to allow interpretation. Many of the ambiguous responses were expressed as
isolated words or phrases, such as the following examples: “square? isosceles tri-
angle?” “points, start, hit, form a triangle (1 hit)”; and “If you stay with the
sequence of units of.” The other responses in the set eliminated from further con-
sideration were meta-level comments, such as the following: “I feel frustrated because
I am having trouble finding a pattern.” “Can protractors be used?” “How can I orga-
nize all this info?” “What do they want solved?” “To tell you the truth, I'm con-
fused!” “Not familiar with the game of pool.” and “This seems like a progression
problem, but I just didn’t have enough time to figure it out.”

Although there was considerable variety in the nature and form of written
responses given by subjects in the IP and AP phases, most were appropriate
responses that represented explicitly or implicitly posed problems. Therefore, a more
extensive analysis was conducted on the 334 appropriate responses (i.e., all except
the meta-level comments and the ambiguous statements).

Comumonly Posed Problems

Given the variety of ways in which subjects in this study expressed their posed prob-
lems, determining when the responses of two different persons expressed essentially
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the same underlying problem was a nontrivial task, and there were relatively few
instances in which the responses of two different persons matched exactly.
Moreover, some responses were vague and somewhat difficult to interpret.
Nevertheless, subjects’ responses could be grouped into clusters corresponding to
prototype problems in order to examine the types of problems posed. In this way
we found that a majority of the posed problems dealt with relationships between
and among the table dimensions (length and width), the number of times the ball
hits the sides on its path to its final destination, and the final pocket the ball
enters. Problems such as the following were prototypical:

* What is the relationship between the length and width of the table and the num-
ber of times the ball hits the sides?

« What is the relationship between the length and width of the table and the final
pocket the ball enters?

* What is the relationship between the number of hits and the final pocket the
ball enters?

« What is the number of hits (or final pocket the ball enters) when the table dimen-
sions are 6 X 5?7 Both odd numbers? Both even numbers?

* What is the number of hits (or final pocket the ball enters) when the table is square?

Responses associated with this type of problem were thus fairly closely associ-,
ated with the kinds of relationships between table dimensions and number of hits
or final pocket that underlie problems that are typically posed for students when the
BBM task setting is used in curriculum materials (e.g., Fitzgerald et al., 1986; Jacobs,
1970). Nevertheless, the responses produced by subjects in this study varied in degree
of generality or specificity. Some responses were stated in a very general way (e.g.,
. Givenan M x N table, in which pocket will the ball 1and?), and others were stated
with €SS generality (e.g., For a 3 x 5 table, how many hits?).

The remainder of the posed problems tended to deal with other aspects of the BBM .
task setting (e.g., initial angle, characteristics of table, ball, or path traveled). The
following are prototypical examples of these kinds of responses:

» What happens if the angle is different from 45° (e.g., 60°, 110°)?

* How does the speed (or velocity) of the ball affect the outcome?

« What happens when spin (“English”) is put on the ball?

« Will the ball always land in a pocket? (or, Will the ball never land in a pocket?)
» Will a ball shot from pocket A ever land in pocket A?

« What happens if the ball is shot from a pocket other than A?

* Excluding dimensions, what are the characteristics of the table? (e.g., How many
pockets? Where are the pockets located? Is the table level and flat?)

 Will the angle of incidence always equal the angle of reflection?

* How does the force of the shot affect the outcome? (e.g., What happens if you
hit the ball too hard? Too easy?)

+ What are the characteristics of the path the ball follows? (e.g., In which direc-
tion does the ball travel on an 8-by-6 table?)
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Responses associated with this type of problem were not at all like the kinds of tasks
that are typically posed for students when the BBM task setting is used in curriculum
materials (e. g., Fitzgerald et al., 1986; Jacobs, 1970). Moreover, many of these responses
indicated a concern with the practical aspects of pool tables (e.g., location of extra pock-
ets, flatness) or the path of pool balls (e.g., spin, friction), thereby suggesting that some
subjects were treating the task as practical rather than abstract.

Differences in Posing Problems in the IP and AP Phases

Table 1 displays the mean number of posed problems for each posing phase (IP
and AP) of the BBM task for subjects who worked individually and those who worked
in pairs. Subjects posed an average of about four problems in the IP phase; the dif-

ference between the average number of problems posed in the IP phase by individuals
- and pairs was not statistically significant. There were fewer problems posed by indi-
viduals and by pairs in the AP phase than in the IP phase, but the difference was
statistically significant only for the responses of pairs (#(46) = 3.6, p < .01). Within
the AP phase, individuals posed an average of about one more problem than pairs,
but this difference was not statistically significant.

Table 1

Mean Number of Posed Problems by Posing Phase for Individuals and Pairs

- o ' IP phase | AP phase
Individuals 3.7 ‘ 2.6
(n=33) (1.9) 2.9)
Pairs 3.7 , 1.6

(n=124) (1.8) (2.2)
Note. Standard deviations are in parentheses.

Beyond a general examination of response frequency in the two task phases, it
is also interesting to consider the frequency with which particular problems were
posed in each phase. A careful consideration of particular responses in each task
phase has the potential to reveal important aspects of subjects’ thinking while pos-
ing problems. There were some interesting similarities and differences between the
IP and AP phases both with respect to the generality of the posed problems and to
the frequency with which certain types of problems were posed, and these differ-
ences appear to be due to the influence of the intervening problem-solving phase.
For example, in both the IP and AP phases, subjects frequently posed problems involv-
ing table dimensions, the number of hits, and the final pocket. More such problems were
posed in very general form in the IP phase, but these generally stated problems repre-
sented about the same proportion of problems posed in both the IP and AP phases.

The lack of an increase in stating problems in general form is somewhat surpris-
ing, because it is reasonable to assume that the intervening problem-solving phase,
in which a fairly general problem was the target of solution, would have encouraged
generalization. Nevertheless, the nature of the problem solving done by most subjects
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probably mitigated against a trend toward greater generality in the AP phase. In par-
ticular, most subjects were not able to solve the problem completely in the allot-
ted time for the PS phase, and most attempted a solution through a process of exam-
ination of specific cases in an effort to find patterns and generate generalizations.
Thus, it is likely that the combination of attempting to solve by examining specific
cases and failing to achieve a general solution actually influenced subjects to
pose problems with less generality than expected. This explanation is fortified by
the finding that the solution attempts produced by subjects generally contained a
solution or partial solution for pockets B, C, and D but not for pocket A, and prob-
lems concerned with getting the ball (which was originally shot from pocket A) to
return to pocket A became much more prevalent in the AP phase than in the IP phase.
Only 6 problems dealing with pocket A were posed in the IP phase, but 24 such prob-
lems were posed in the AP phase. In fact, the problem concerned with getting the
ball into pocket A was the most frequently posed (and often the only) problem in
the AP phase for subjects working in pairs.

The Process of Posing Problems

In posing problems during the IP and AP phases, some responses indicated that sub-
jects generated problems by keeping the problem constraints fixed and focusing their -
attention simply on generating goals. Such problems involved either a specific goal
(e.g., determining the number of hits or the final destination of the ball for a table of
specified dimensions) or a general goal (e.g., seeking a relationship between the size
of the table and the number of hits or the final destination of the ball). In this process
of generating problems, one “accepts the given” (Brown & Walter, 1990, p. 15), but
other responses also suggested that another process was used to generate problems. Some
responses indicated that subjects manipulated the given constraints of the task setting
as they generated goals, using a process Brown and Walter call ““challenging the given”
(1990, p. 15). These problems involved either changing the underlying assumptions
in the BBM task (e.g., introducing spin on the ball, introducing or removing friction
as a consideration, varying the ball’s speed or momentum, questioning the relation-
ship between angle of incidence and the angle of reflection) or on changing the
explicitly stated conditions of the task (e.g., shooting the ball at an angle other than 45°,
moving the starting point from the lower left corner to another position, changing the
number of pockets). Each of the 334 posed problems could thus be categorized as a
Goal problem (GL) or as one of two types of constraint-manipulation problems:
Initial Conditions (IC) or Implicit Assumptions (IA).

'The posed problems were coded by two raters working independently. For the
purpose of establishing interrater reliability, about 75% of the posed problems were
coded by both raters. Their interrater agreement was quite high (Kappa > .90), and
the few disagreements were resolved through discussion to reach consensus.

Table 2 shows the frequency of problems posed in each category for individu-
als and pairs in each posing phase. Overall, about 60~70% of the problems posed
were classified as goal problems; within the 30-40% of the problems classified as
constraint-manipulation problems, they were about equally divided between those
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involving changes in the underlying assumptions and the initial conditions of the
task setting. A similar proportional distribution of posed problems into these cat-
egories was observed in both posing phases. There was no significant difference
between the proportions of goal and constraint-manipulation problems posed by sub-
jects working in pairs or individually, although the pattern across the two kinds of
constraint-manipulation problems was significantly different for pairs and individuals
in the two phases (}*[2, N = 125] = 6.36; p < .05).

Table 2 ) :
Frequency of Posed Problems in Each Category for Each Posing Phase for Individuals and Pairs
Constraint manipulation Goal generation
Implicit Initial
‘assumptions conditions Goals Total
aay . (¢(®)] (GL)
IP phase A
Individuals 23 S 23— g ) ' 121
Pairs 14 22 ' 50 : _ 86
AP phase . : i
Individuals 9 .19 60 - - 88
Pairs 11 3 25 A 39
Total ’ 57 67 210 334

Although problems generated via constraint manipulation were fairly common
in the set of responses, very few subjects generated their problems solely from this
perspective. If each set of IP responses and each set of AP responses for the 33 indi-
viduals and 24 pairs is considered as a unit, only about 9% (10 of the 114 sets of
responses) contained only problems generated via constraint manipulation. In
contrast, about 33% (38 of the 114 sets of responses) contained only problems gen-
erated by keeping the constraints fixed and posing new goals. The proportions of
“pure” constraint manipulation responses and “pure” goal generation responses were
quite similar in the IP and AP phases.

Relationships Among Posed Problems

The posed problems were also examined for evidence of possible relationships among
clusters of problems posed by each subject in order to detect underlying cognitive processes.
Several different kinds of relatedness were detected in the problems, the most promi-
nent of which were chaining and systematic variation.

One kind of relatedness evident in subjects’ responses was called chaining,
because the set of related problems appeared to have a sequentially linked character.
A form of chaining occurred when the answer to one problem was needed in order
to generate the answer to the next problem in sequence. The most commonly observed
form of chaining, illustrated in the set of problems denoted Cluster A in Figure 2,
involved a cluster in which the first few problems were structured so as to lead to
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(or be closely associated with) a generalization stated or implied in the first or last
problem posed in the chain. A somewhat different kind of chaining relationship is
illustrated in the set of problems desi gnated as Cluster B in Figure 2, in which the
first three problems (stated in the form of conjectures) undergird the final problem
(also stated in the form of a conjecture).

Cluster A
Where does the ball land for a 2 x 4 table?
Where does it land for a 3 x 6 table?
Where does it land for a 4 x 8 table?

Where does it land for a table with length twice
as long as width?

Cluster B

Assuming no spin, a table that is 21 x n will
always end up with the ball in the B pocket with
one ricochet.

A table 3n x 2n will always end up with the ball

in pocket D with three ricochets.

A table 4n x 3n will always end up with the ball -
in pocket B after five ricochets. :

It seems that the ball will end up in the pocket in
a + b - 2 ricochets on an an x bn table; provided -
a and b are relatively prime. '

Cluster C

What happens [How many hits] in the case of a
square table? : - '

What happens when / = 2w?
What happens when / = 3w?

Cluster D

What if the table were square?
What if the angle were not 45 degrees?

What if the ball had not originally been shot from
a corner? : '

What if the ball is shot with a different initial force?
What if the ball spins?

Figure 2. Examples of clusters of related problems.

Other problem clusters contained problems that were considered to be related in another
way, as systematic variants of each other. In this type of relatedness, a critical aspect
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of a problem is held constant while other critical aspects are varied systematically. The
following pair of posed problems is an example of relatedness by systematic variation:

What is the relation of the table dimensions to the final pocket?
What is the relation of the table dimensions to the number of hits?

Here, concerns about table dimensions remain constant across the pair, and the
critical features of final pocket and number of hits are varied between the pair. Systematic
clusters were occasionally larger than pairs of problems, as is evident in the set of
posed problems designated as Cluster C in Figure 2. In this example, systematic vari-
ation is evident in a constant concern about an outcome (it is fairly clear from the
other problems posed by this subject that what was meant here by “what happens”
was “how many hits occur”) when the dimensions of the table are varied.

Other examples of relatedness were also found in subjects’ responses. For
example, a few pairs of problems illustrated a type of relatedness that might be called
symmetry, in which the goals and conditions of one problem are symmetrically exchanged
in the other problem: - R

Given the number of hits and the final pocket, can you determine the dlmen—
sions of the table?

‘Given the dimensions of the table, can you determine the number of hits and
the final pocket? ‘

Another set of related problems, designated Cluster D in Figure 2, was posed by
a pair of subjects working together, and it is evocative of Brown and Walter’s what-
if-not problem-posing process (1990). The relatedness here is based on a common
tendency to challenge implicit or exlicit constraints and to state the problems in very
open-ended form. A somewhat more general version of this kind of problem relat-
edness was evident when all (or nearly all) the problems generated by an individ-
ual or pair appeared to be focused on a singular set of concerns, such as generating
problems dealing exclusively with the set of implicit assumptions in the task or with
the feasibility of having the ball return to the pocket from which it was originally shot.

More than half of the subjects generated problems that gave explicit evidence of at least
one type of problem relatedness. The responses of individuals were about 50% more likely
than those of pairs to show evidence of relatedness among clusters of posed problems.

DISCUSSION

In this study, middle school teachers and prospective secondary school teachers
worked individually or in pairs to pose mathematical problems associated with a
reasonably complex task setting, before and during or after attempting to solve a
problem within that task setting. In response to the BBM problem-posing task used in
this study, subjects were able to generate a large number of reasonable problems dur-
ing both problem-posing phases, thereby suggesting that these teachers and prospec-
tive teachers have some personal capacity for mathematical problem posing. In fact, almost
all subjects successfully posed at least one problem in both posing phases. These
findings suggest that middle school and secondary school teachers are able to engage
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in reasonable ways with mathematical problem posing, thereby suggesting that their own
lack of substantial educational experience with problem posing should not be a barrier
to their being able to use problem posing with their students. Nevertheless, many responses
were also ill-posed or poorly stated problems. For example, a sizable portion of the 15%
of BBM task responses that were excluded from analysis were too ambiguous to
allow adequate interpretation, and even among those judged to be adequate. it was some-
times necessary to be quite generous in interpreting the meaning of the responses.

Given that the subjects in this study were either middle school mathematics teach-
ers, presumably accustomed to developing or providing problems for their students,
or preservice secondary mathematics teachers with experience in doing university-
level mathematics, the frequency of inadequately stated problems is quite disappointing. .
Thus, there appears to be a need to provide more opportunities for prospective and
in-service teachers to engage in mathematical problem posing and to analyze the
emerging problems for their feasibility and their quality. As teachers become
more proficient in their own problem posing, it is reasonable to assume that they
will become more willing to have their students engage in such activities.

It was hoped that this study would suggest some interesting ways in which collab-
oration might influence mathematical problem posing. In fact, very few differences were
detected between the responses to the BBM task by individuals and pairs, and the only |
difference of note was that subjects working individually gave more evidence of relat- -
- edness among clusters of posed problems than subjects working in pairs. The general
findings, and the particular result regarding relatedness, suggest that the pairs may not
have been functioning well as collaborators in their problem posing, perhaps because
the two persons in each pair were not accustomed to working together or perhaps due-
to the novelty of the problem-posing task. If a pair functioned as two individuals work- -
ing in parallel, then one would expect to find little evidence of relatedness within the
- set of posed problems, and this is what was found in this study. Thus, the possible influ-
. ence of collaboration on mathematical problem posing awaits further investigation.

Although generalization from the results of this study is limited by the fact that the
results are based on written responses to a single problem-posing task, there are nev-
ertheless several findings that appear to illuminate aspects of problem posing as a cog-
nitive process and suggest the feasibility and value of further research in this area. For
example, it was found that subjects spontaneously engaged not only in “accepting the
givens,” when they posed problems by keeping the implicitly and explicitly given con-
. straints fixed and simply generating goals, but also “challenging the givens,” when they
varied the initial conditions or implicit assumptions of the given task setting, Almost
40% of the total number of posed problems gave evidence of subjects’ readiness to manip-
ulate the implicit assumptions or explicit conditions of the task, yet only 9% of the sets
of responses generated by subjects in both posing phases of the BBM task contained
problems posed exclusively in this way. Thus, the data from this study suggest that many
subjects engaged in such behavior at least once in their problem posing, and the large
number of problems apparently posed in this way suggests the likelihood that most of
the subjects in this study might be receptive to the what-if-not instructional approach
to problem posing (Brown & Walter, 1990), in which the conditions and constraints of
a problem are systematically varied as a means of generating new problems, because
they spontaneously engaged in such an approach in their own problem posing.
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The extent to which people are willing to engage in challenging the givens, and the
relationship between this tendency and receptivity to what-if-not instruction may both
be fruitful areas for further research. If such research were undertaken, however, it would
be wise also to consider another finding of this study; namely, that subjects tended to
generate more problems in the Initial Posing (IP) phase than in the Additional Posing
(AP) phase. This result may suggest a natural tendency or preference for problem gen-
eration prior to problem solving, thereby suggesting a possible complication in imple-
menting the what-if-not instructional approach, which relies on post-hoc problem
generation. It is possible, however, that the differential problem-posing frequency in the
two phases may be due as much to task and time constraints as to natural tendencies in
human problem posers, because most subjects did not generate any problems during
the problem-solving portion of the time available for the AP phase, thereby leaving only
5 minutes for problem posing for the AP phase (i.e., half the time available for the IP
phase). Nevertheless, this finding should be considered and subjected to further exam-
ination in future research related to post-hoc problem posing. '

Another potentially interesting process-related finding is the suggestion that sub-

jects’ problem posing may have been influenced not only by their mathematical knowl-
edge but also by other experiences in related task settings. For example, some sub-
jects posed problems such as “Will the angle of incidence always equal the angle
- of reflection?” and “What effect does friction have on the outcome?” Was their pos-
ing affected by a perception of the BBM task as an applied physics problem? Other
subjects posed problems such as “What happens if you move the shooter to another
pocket?” and “What happens if you put ‘English’ (spin) on the ball?” Was their pos-
ing affected by their recreational experiences in playing pool? Although the writ-
ten response data alone do not allow us to know with certainty if subjects were actu-
ally trying to apply physical principles related to the playing of pool or to the movement
of objects on frictionless surfaces, or if the task evoked in them experiences and ideas
related to what they may have perceived as impediments or difficulties (literally,
problems) that might interfere with the idealized path of the ball in the BBM task.
- Nevertheless, the influence of such prior experience seemed evident in the prob-
lem posing of some subjects. Understanding the effects of prior experiences on math-
ematical problem posing appears to be a promising area for further investigation.

Yet another important process-related consideration in problem generation is the extent
to which subjects gave evidence of being systematic in posing problems. As Kilpatrick
(1987) has noted, there are many cognitive mechanisms, such as reasoning by analogy,
that could be used to generate new problems. In this study, it was possible that subjects
could engage in problem posing by generating problems through an essentially random
process of goal generation or constraint manipulation, or it was possible for subjects to
generate clusters of related problems. The finding that more than half of the subjects gen-
erated problems that gave evidence of a least one type of problem relatedness (system-
atic variation, chaining, symmetry) strongly suggests that much, although certainly not
all, of the problem posing by novice problem posers in this study was done in a systematic
manner. If this tendency to be fairly systematic can be found in other populations and
across many tasks, this result may have important instructional implications, because sys-
tematic approaches to problem posing; such as Brown and Walter’s what-if-not instruc-
tion, could be seen as related to the informal approaches taken by novice problem posers.
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Instructional relevance can also be found in the results regarding the correspondence
between the problems generated by subjects in this study and the problems that are typ-
ically included when the BBM task setting is included in curriculum materials for mid-
dle school and high school students (e. g., Fitzgerald et al., 1986; Jacobs, 1970). Some
problems routinely included in curriculum materials related to the BBM task setting
were also ones that were posed by the subjects in this study. For example, problems
regarding the relationship between table size and the final destination of the ball or the
number of hits were not only quite commonly posed by subjects, but they also appear
in the curriculum materials. On the other hand, other problems found in the curricu-
lum materials were rarely or never generated by subjects in this investigation. For exam-
ple, the problem of determining a relationship between table size and the distance trav-
eled by the ball during its path around the table is found in the curriculum materials,
but not one of the 33 individuals or 24 pairs in this study generated this problem.

This set of findings appears to be important for two related reasons. From a pragmatic
instructional perspective, it seems important to know that some problems typically included
in curriculum materials might be fairly “natural” for subjects to pose for themselves,
if they were given an opportunity to do so (e.g., in this case, determining the relation-
ship between table size and final destination of the ball). Because students may be more
highly motivated to solve a problem if they have posed it for themselves rather than hav-
ing it posed by an external source, there may be instructional advantage to providing
students with opportunities to pose problems for themselves, whenever it is feasible to
do so. As was done here with the BBM tasks, many standard problem-solving activi-
ties could be similarly transformed into more open-ended explorations involving prob-
lem posing and problem solving (Silver, Kilpatrick, & Schlesinger, 1990). Nevertheless,
it is also true that other problems may be less natural for students to pose for themselves
(e.g., in this case, determining a relationship between table size and the distance trav-
eled by the ball during its path around the table). Thus, even if teachers provide students
with opportunities to generate their own problems; certain problems may not arise nat- -
urally from the problem-posing activity of students; thus, some problems may need to
be introduced in another way. L | .

Another reason for the importance of these findings is more theoretical, because these
results (taken together with others in this study) suggest a complex relationship
between problem posing and problem solving. It had been hoped that the design of this
study would allow some deep insights into this relationship by affording an opportu-
nity to analyze differences in the problem posing of successful and unsuccessful
* solvers, and by analyzing differences in the problem solving of those who posed the
target problem prior to solution and those who did not. Unfortunately, the PS phase
target problem was successfully solved in the allotted time by only a few subjects,
and the number was not sufficient to support a careful analysis of the differences noted
above. Despite this limitation, the findings of the study did illuminate some aspects
of the relationship between problem posing and problem solving.

A gencral concern is whether or not a person will pose only problems that he or she
has alrcady solved or is confident of solving. If so, then one’s problem posing could
be considered an index of one’s problem solving (Kilpatrick, 1987). The finding that
some subjects posed problems that would be very difficult ( probably impossible) for
them to solve suggests that they were not always aware of solutions for their posed
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problems. For example, not only did some subjects pose the problem about determining
the relationship between the table’s dimensions and the final pocket, which they were
then not able to solve completely in the allotted time, but also some subjects posed prob-
lems involving changing the measure of the initial angle from 45° to a different
angle measure. Problems in this task setting involving angle measures other than 45°
are much more difficult to solve than those involving an initial angle of 45°, and this
is why such problems do not appear in curriculum materials for middle school and high
school students. In general, the problems in those curriculum materials appear there
because they have “neat” mathematical solutions that can be obtained fairly directly
from the use of commonly taught elementary mathematical ideas. Thus, the finding
that subjects posed problems about varying task constraints like the initial angle sug-
gests that they did not simply pose problems they knew they could solve or for
which they had already determined a solution. On the other hand, the frequent posing
of conjectures, some of which were accompanied by supporting sketches, suggests that
problem posing was not always done in a manner independent of problem solving.
~—Another finding suggests a clear influence of problem-solving activity on the post-
hoc posing of subjects in this study. In particular, the most frequently posed prob-
lem in the AP phase concerned getting a ball originally shot from pocket A to return
to pocket A, and this problem was posed more than three times as often after prob-
lem solving than before. The fact that the problem of getting the ball shot from pocket
A to return to pocket A remained an unsolved part of the problem for most persons
during the Problem Solving (PS) phase of the BBM task suggests a good reason why
this problem became more salient in the post-solution posing. The finding that sub-
jects’ problems were not stated with more generality in the AP phase than in the
IP phase is also suggestive of a way in which subjects’ problem posing was influ-
enced by their problem solving, because the solution attempts tended to involve check-
ing specific cases to generate patterns and because few general solutions were obtained.
Thus, further investigation into the differences between posing before and after prob-
lem solving is likely to be fruitful, as is other exploration of the general relation-
ship between mathematical problem posing and problem solving.

CODA

It is said that the hallmark of a good exploratory study is that it raises many more
questions than it answers. By that criterion, this study was a success. We hope that our
initial foray into the largely uncharted wilderness of mathematical problem posing will
encourage others to make similar journeys. Mathematical problem posing is central
to the discipline of mathematics, and it is also viewed as desirable instructional prac-
tice. If our understanding of mathematical activity is to increase and our capacity to improve
mathematics instruction is to strengthen, then much more research is needed to develop
a deeper understanding of this and related forms of generative cognitive activity.
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