Use of your notebooks/memos/books: You can bring-in only a sheet of A4 paper.
Use of your mobile etc. \& Internet: Strictly forbidden.
Discussion with other attending students: Strictly forbidden.

Administrative Remarks

- Write your name and student ID on the answer sheet. Put your student ID on the desk.
- Allowed on your desk: student ID card (required), pens/pencils, correction tools (eraser etc.), rulers, drinks, and the brought-in A4 sheet. Other items must be stored in your bags.
- After 9:20, the following acts are regarded as cheating. You may immediately lose your credit.
- If non-allowed items (pen cases, foods, poaches, etc.) are found on desks.
- If your mobile phones, tablets, or PC are not stored in your bags, or if you use them. They must be in your bags even after you submit your answer sheets.
- Breaks are not allowed in principle. After 10:00, you may leave after submission. In case of health problems or other issues, call the TA or lecturer.
- Any form of academic dishonesty, including chats, additions/corrections after the period, and using your phones, will be treated by NSYSU "Academic Regulations."

Scientific Remarks

- Include your calculations or thinking process for partial mark!
- Use English, where mistakes are tolerated. Meanwhile, scientific mistakes are not tolerated.
- Provide appropriate units if necessary.
- Handle significant digits properly.
- Clearly distinguish vectors (by writing \vec{E}, \vec{x} or \mathbb{E}, \mathbb{x}) from scalars (E, x).
- If you notice any errors/issues in the questions, explain the error on your answer sheet, suitably adjust the question, and answer the corrected question.
- You may use the following symbols and values without definition/declaration.

$$
\begin{array}{lll}
\text { standard acceleration of gravity } & g & \\
\text { Newtonian constant of gravitation } G & & =9.8 \mathrm{~m} / \mathrm{s}^{2} \\
\text { elementary charge } & e(\text { or }|e|) & =1.6 \times 10^{-19} \mathrm{C} \\
\text { permittivity of free space } & \epsilon_{0} & =8.9 \times 10^{-12} \mathrm{C}^{2} \mathrm{~N}^{-1} \mathrm{~m}^{-2} \\
\text { permeability of free space } & \mu_{0}=\left(\epsilon_{0} c^{2}\right)^{-1} & =1.3 \times 10^{-6} \mathrm{~N} / \mathrm{A}^{2} \\
\text { Coulomb constant } & k_{e}=\left(4 \pi \epsilon_{0}\right)^{-1} & =9.0 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2} \\
\text { speed of light in vacuum } & c & =3.0 \times 10^{8} \mathrm{~m} / \mathrm{s} \\
\text { Avogadro's number } & N_{\mathrm{A}} & =6.0 \times 10^{23} / \mathrm{mol} \\
\text { masses of protons and electrons } & m_{p}, m_{e} & =1.7 \times 10^{-27} \mathrm{~kg}, 9.1 \times 10^{-31} \mathrm{~kg} \\
\text { Unit vectors in the direction of the axes } \quad\left(\overrightarrow{e_{x}}, \overrightarrow{e_{y}}, \overrightarrow{e_{z}}\right) \text { or }\left(\widehat{e_{x}}, \widehat{e_{y}}, \widehat{e_{z}}\right) \text { or }(\hat{i}, \hat{j}, \hat{k}) \\
\vec{E}(\vec{x}) \text { electric field at } \vec{x} & \vec{B}(\vec{x}) \text { magnetic field }(\text { magnetic flux density }) \text { at } \vec{x} \\
V(\vec{x}) \text { electrostatic potential at } \vec{x} & \\
\sqrt{2} \approx 1.414 \quad \sqrt{3} \approx 1.732 \quad \sqrt{5} \approx 2.236 \quad \sqrt{7} \approx 2.646 \quad \pi \approx 3.142 \quad \mathrm{e} \approx 2.718
\end{array}
$$

Answer all the problems. You can use the formula

$$
\sin \alpha+\sin \beta=2 \sin \frac{\alpha+\beta}{2} \cos \frac{\alpha-\beta}{2}, \quad \cos \alpha+\cos \beta=2 \cos \frac{\alpha+\beta}{2} \cos \frac{\alpha-\beta}{2}
$$

[Part I] Wave (12 points)
(1) Consider an electromagnetic wave with speed $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$ and frequency $8 \times 10^{14} \mathrm{~Hz}$. Discuss its properties (period, angular wave number, etc.) and anything related to it. In this problem, you can approximate $\pi \approx 3$.
(2) Derive the formula for beating frequency, $f_{\text {beat }}=\left|f_{1}-f_{2}\right|$.

[Part II] Oscillation (8 points)

As in the right figure, a small object with mass m is attached to the bottom end of a hanging vertical spring, whose spring constant is k and equilibrium length is L_{0}. At $t=0$, the object is at rest and the spring is at equilibrium. Therefore, the motion of this block is described by, with the air-resistance force $F_{\text {air }} \approx b v(t)$,

$$
m \frac{\mathrm{~d}^{2}}{\mathrm{~d} t^{2}} x(t)=-k\left(x(t)-L_{0}\right)+m g-F_{\mathrm{air}}, \quad \frac{\mathrm{~d}}{\mathrm{~d} t} x(0)=0, \quad x(0)=L_{0}
$$

Discuss the motion of this object.
[Hint: Neglect $F_{\text {air }}$ by setting $b=0$ and define $f(t):=x(t)-\left(L_{0}+m g / k\right)$ to simplify the differential equation; solve it to find the amplitude, period, and frequency of the motion under no air resistance. Discuss energy conservation. You can further try to provide a qualitative discussion under air resistance.]

[Part III] Conceptual Questions I (7 points)

(1) Write down the unit for each of the following quantities.
(A) intensity of a periodic sound wave
(B) angular wave number
(C) linear charge density
(D) electric flux
(2) Fill the six blanks in the sentences below.

- The highest point of a wave is called \qquad
E) and the lowest point is called \qquad (F) .
- In standing waves, a point of zero amplitude is called \qquad , while a point of maximum displacement is called .
- (I) 's law states that the net flux through any \qquad (J) surface surrounding a point charge q is given by q / ϵ_{0}.

[Part IV] Conceptual Questions II (8 points)

As in the figure, two point charges are located on $x y$-plane; they have $q_{\mathrm{A}}=+1 \mathrm{nC}$ and $q_{\mathrm{B}}=-1 \mathrm{nC}$, respectively. The reference level of electrostatic potential V is set zero at infinity.
(1) Provide a sketch of the electric field lines.
(2) Fill the four blanks in the sentences below.

- This set-up is called an (A) . [Hint: two words]
- V at P is
(B) and V at Q is \qquad .
[Choice: positive/negative/zero]

- $|\vec{E}|$ at P is \qquad (D) than $|\vec{E}|$ at Q . [Choice: larger/smaller]
(3) Fill the four blanks in the sentences below. You can choose from the eight cardinal directions such as "east", "northwest", and "southeast", assuming the positive y-direction points north.
- Because $\left|q_{\mathrm{A}}\right|=\left|q_{\mathrm{B}}\right|$, the direction of \vec{E} at P is \qquad (E) .
- If $q_{\mathrm{A}}=4 \mathrm{nC}$ and $q_{\mathrm{B}}=-1 \mathrm{nC}$, the direction of \vec{E} at P becomes (F). Under this set-up, consider \vec{E} at very far points $(R \gg|\overrightarrow{\mathrm{OP}}|)$, where its magnitude $|\vec{E}|$ is tiny but non-zero. The direction of \vec{E} at $(-R, 0)$ is \qquad (G) , while the direction of \vec{E} at $(0,-R)$ is \qquad (H) .

[Part V] Electric Field (15 points)

Consider $x y z$-space. A point charge $+Q$ exists at the origin $O=(0,0,0)$, where $Q>0$.
(1) Find electric field $\vec{E}(x, y, z)$.
(2) Let V_{0} be the electrostatic potential level at infinity. Find electrostatic potential $V(x, y, z)$.

Now, instead of a point charge, consider a solid sphere of radius A carrying a total charge $Q>0$. We assume it is made of an insulator, it has a uniform volume charge density $\rho=3 Q / 4 \pi A^{3}$, and its center is at $(0,0,0)$.
(3) Find the magnitude of the electric field, $|\vec{E}(x, y, z)|$, outside the sphere $\left(\sqrt{x^{2}+y^{2}+z^{2}}>A\right)$.
(4) Find the magnitude of the electric field, $|\vec{E}(x, y, z)|$, inside the sphere $\left(\sqrt{x^{2}+y^{2}+z^{2}}<A\right)$.
(5) What if the solid sphere is made of a conductor? Discuss the charge distribution and $|\vec{E}|$ inside and outside the sphere, assuming the same net charge $Q>0$ and radius A.

[Part VI] Extra Problem (unlimited points)

This is a challenging problem for motivated students, but qualitative discussion is not difficult.
Three positive charges are on x-axis. Two of them are fixed. The other one can move freely without friction on x-axis but not in other directions. At $t=0$, the unfixed charge is at rest and located at the midpoint of the other two fixed charges. Describe its motion after $t=0$. [Hint: Draw $V(x)$.]

