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Abstract- The absolute dispersion, Lagrangian velocity correlations, eddy diffusivity, structure func-
tion, and energy spectra characteristics of a quasi-two-dimensional turbulent flows are investigated in
this study using a combined ezperimental-numerical technique. Ezperimented results, especially those for
the absolute dispersion and eddy diffusivity and their asymptotic laws in the initial dispersion regime,
correlate well with the classical diffusion-theory. On the other hand, the calculated Lagrangian statistics
at large times are somewhat inconsistent with the predicted results due to nonstationarity of turbulence.
This discrepancy can be substantially reduced if the dispersion analyses are based on the mean particles
energy at t=0 and t=T (T is the Lagrangian integral time scale), respectively, for small and large times
regimes. Furthermore, the slope of the Lagrangian energy spectrum beyond the cut-off frequency is close
to -2, which ts similar to previous observational results of Lagrangian velocity spectra as deduced from

surface or subsurface drifters in the ocean.
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INTRODUCTION

The use of freely drifting particles to measure or
observe the flow field has become increasingly rele-
vant in many branches of fluid mechanics, e.g., phys-
ical oceanography, atmospheric science and hydrody-
namics. Compared with the typical Eulerian descrip-
tions of flows by the fixed-point measuring device, the
current-following floats or drifters provide a Lagrangian
view of flows and have led to many discoveries in ar-
eas such as mixing and diffusion in turbulent fields.
Taylor’s [1] classical analysis of particle motion in sta-
tistically homogeneous and stationary turbulence pro-
vides a framework for describing mean eddy fluxes. The
problem of diffusion in a field of homogeneous turbu-
lence was later considered and its asymptotic equations
were derived by Batchelor [2]. More recently, Babiano
et al. [3] theoretically and numerically investigated the
single-particle dispersion, Lagrangian structure func-
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tions and Lagrangian energy spectra characteristic of
two-dimensional incompressible turbulent flows. Their
works confirmed the classical asymptotic estimates of
single-particle dispersion at small and large times, as
provided by Taylor [1] and Batchelor [2]. On the other
hand, Freeland et al. [4] first studied the Lagrangian
properties of neutrally buoyant floats drifting at 1500m
depth in the ocean. They found that the classical diffu-
sion theory for homogeneous turbulence was incapable
of accurately describing the dispersion of their floats
; in addition, the nonstationarity of the statistics was
attributed as the reason for this discrepancy.

These studies, among others, have motivated the
present investigation of single-particle dispersion, the
Lagrangian structure function, and the Lagrangian en-
ergy spectrum in a two-dimensional turbulence using
a combined experimental-numerical technique devised
earlier by Tseng and Maxworthy [5]. The turbulent
field generated by our laboratory apparatus is well-
controlled and serves as a good test of Taylor’s [1] hy-
pothesis. Meanwhile, the calculation method adopted
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in this study provides a valuable description of float
trajectories. A comparison is then made of results ob-
tained in this study with previous field measurements
of Freeland et al. [4] and other studies, and with the
theoretical and numerical results of Babiano et al. [3].

EXPERIMENTS

The experiments were conducted in a square tank
(Figure 1) of dimensions 240cm x 240cm x 25¢m. The
tank was filled with a two-layer system consisting
chiefly of an upper layer of fresh water lying over salt
water of density 1.040g/cm?®. Both layers were of the
same depth of 6.5 cm and were filtered overnight before
introducing into the tank. A thin layer of salt-saturated
water, 1¢m deep, was introduced beneath this two-layer
fluid to reduce the interaction of vortices with the bot-
tom of the tank. A large number of polystyrene par-
ticles (a few thousands), which are commercially avail-
able with a density of about 1.04 g/e¢m?® and of dimen-
sion 3.5mm x 3.0mm x 2.0mm, were placed in the fresh-
salt water interface to mark the flow field. Turbulence
was created by towing a grid of vertical bars 3em wide,
set'on 15¢m centers through the depth of the fluid from
one end to the other end of the tank and then back to
the initial position to eliminate any mean motion. The
grid was towed at a constant speed of 5¢m/sec, which
was rapid enough to produce a large intensity of turbu-
lence, yet slow enough to prevent the generation of un-
wanted internal waves that might introduce distortions.
A short transient period of three-dimensional turbulent
motion was first generated. This three-dimensional tur-
bulent motion was suppressed vertically by the stratifi-
cation and it quickly became quasi-two-dimensional. In
this approach, a homogeneous, quasi-two-dimensional
turbulent flow was generated at the sharp density in-
terface of the two-layer system. The evolution of this
quasi-two dimensional turbulent flow was visualized by
photographing the neutrally buoyant particles over a
period of about 20 minutes from above the tank with
time exposures between 4 and 13 seconds. The particle
streaks were then digitized, and the resulting velocities
interpolated onto a regular 64 x 64 grid. Ten differ-
ent particle streak photographs were digitized. These
photographs were taken at about 1 to 20 minutes af-
ter the start of particle motion. The digitized results
were used for further analysis of particle trajectories
and Lagrangian statistics, as is described in the follow-
ing sections.
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Fig. 1 Apparatus of experiments.

EDDY FIELDS AND PARTICLE TRAJECTORIES

Four of the ten streak photographs digitized in this
study are shown in Figure 2 to illustrate the evolution
of the two-dimensional turbulence. These four pho-
tographs represent the digitized velocity fields at 103,
149. 310, and 610 seconds, respectively, after the start
of grid motion. The growth of the large number of
vortices to larger scales by vortex merging as time pro-
gressed can be clearly observed. Previous results on
the vortex dynamics and front geometry in an exper-
imentally generated two-dimensional turbulence have
been reported by Maxworthy et al. [6] and Tseng and
Maxworthy [5]. Our main interest here is, however, on
the Lagrangian properties of these eddy fields in two-
dimensional turbulence.

The trajectories of a large number of neutrally
buoyant Lagrangian particles in a two-dimensional
turbulent flow can be determined by a combined
experimental-numerical method. This method, which
has been used in another study (Tseng and Maxwor-
thy [5]), to compute the evolution of a two-dimensional
turbulent/nonturbulent front, was found by them to
have reasonably good accuracy of the front location.
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The procedures of this method are summarized here.
First a square patch of 10 x 10 “imaginary” particles
was inserted into the center region of the initial ve-
locity field (Figure 2a). This initial velocity field was
assumed to be frozen for a certain time interval, gener-
ally that between successive frames. Next, the particles
were advanced by the frozen velocity field to their new
positions using a first-order forward scheme with a time
step 7,

z(t + 7) = z(t) + 7V (z(t)) (1)

where z(t) and z(t + 7) are the positions of a certain
particle at times ¢t and t + 7, respectively, and the ve-
locity V' at z(t) was evaluated by linear interpolation
within the relevant mesh. The time step 7 was selected
to be 3 seconds, which is smaller than the exposure time
of the corresponding streak photograph. This process
was repeated several times by substituting the updated
particle positions into each velocity field at each time
step. This approach was taken because, at the time,
we were not able to follow so many real particles from
frame to frame in a video sequence.
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Fig.2 Digitized velocity fields at (a) 103, (b) 149,
(c) 310, and (d) 610 seconds after the start of grid
motion. The square box shown in (a) indicates the lo-
cation within which imaginary particles were launched
initially (see text for detail)

The number of imaginary particles was increased to
1000 for the sake of eliminating the discontinuities in
slope due to the finite number of realizations as well
as enhancing the computational accuracy of the La-
grangian statistics. These drifters were divided into
10 ensembles, each ensemble was launched at various
times during the course of the experiment. The num-
ber of particles released and their corresponding time
of release are summarized in Table 1. Note that the to-
tal drift time of each particle was maintained constant
(600 seconds).
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Table 1. Primary Statistics

Ensemble Number Launching a ] Urmas  Urmd

e of times after (in em/s)
particles  the start of
grid motion
(sec)

1 100 124 -0.056 0.011 0.150 0.166
2 100 133 -0.056 0.014 0.149 0.163
3 100 139 -0.061 -0.002 0.138 0.156
4 100 148 -0.064 -0.001 0.134 0.152
5 100 154 -0.063 -0.005 0.124 0.144
6 100 163 -0.066 -0.007 0.120 0.141
7 100 169 -0.068 -0.012 0.114 0.131
8 100 187 -0.066 -0.015 0.114 0.130
9 100 205 -0.050 -0.082 0.109 0.104
10 100 265 -0.035 -0.032 0.102  0.096
mean -0.059 -0.008 0.125 0.138

Let u, v be the components of the velocities in the
directions perpendicular and parallel to the direction
of grid movements, respectively. The mean velocities
%, 7, and the standard deviation %,ms, Vrms, due to the
eddy field for each ensemble, were computed and those
results are listed in Table 1. The mean velocities in
the v component are generally more insignificant than
the r.m.s. velocities of the eddy field. However, it is
not quite the same situation in the u component. One
important result inferred from Table 1 is that the eddy
velocities are closely isotropic (%yms = Vpms)-

LAGRANGIAN STATISTICS

Lagrangian statistics such as the absolute dispersion,
the Lagrangian structure function, the velocity correla-
tion coefficient, the integral time scale, eddy diffusivi-
ties, and energy spectra can be computed and analyzed
from the large amount of data, which consisted of time
series of position and velocity of 1000 drifters with a
3-sec interval and 200 time steps. As mentioned ear-
lier, Lagrangian dispersion analyses are usually based
on the classical theory of Taylor [1] and Batchelor [2].
Under the assumptions of a homogeneous, stationary,
zero-mean, two-dimensional turbulent field, a number
of asymptotic laws have been found for the absolute
dispersion of fluid parcels from their initial position.
The domain of validity of the classical asymptotic es-
timates was further extended by Babiano et al. [3].
Some of those details are presented below.

Consider the time evolution of the dispersion of a
number of fluid particles from their initial positions in
a homogeneous and stationary turbulent field. The ab-
solute dispersion D(t) can be defined as

D) = {([ V(a,r)ar)) )

where V (a,t) is the Lagrangian description of particle
velocity in terms of its initial position a as function of

time ¢, the symbol < - > denotes the ensemble average
over many independent drifters. The eddy diffusivity
K (t) is then defined as

d

K(t) = 5 5 D() (3)

The Lagrangian structure function S(t) is defined as
1
S(t) = 5 < |V (a,0) — V(a,t)|* > (4)
and the Lagrangian velocity correlation coefficient R(t)
is
< V(a,0)V(a,t) >
)= N
= Weopr> (%)

while the Lagrangian integral time scale T is

= /ow R(t)dt (6)

The Lagrangian integral time scale is generally re-
garded as a measure of the time scale during which a
particle “remembers” its initial condition. After the
time T the particle velocities V (a,t) become statisti-
cally independent or uncorrelated with themselves.

Taylor [1] first showed that an important relation-
ship occurs among the eddy diffusivity, absolute dis-
persion, and velocity correlation coeffficient. These re-
lationships are

K(1)= ;500 =2 [ "B ™

E=%<|V(a,0)|”> )
We thus obtain
D(t)—u«:/'z R(r)d
— 48 [ (¢~ 1)R(r)dr ©
Because R(r) — 1 at 7 — 0 and R(r) — 0 at 7 very

large, eqs. (7) and (9) independently approach two
limits, that is, :

(10b)

D(t) = 2Et?
K(t) = 25t 5 fort <<
(i.e. for the initial dispersion phase)
D(t) = 4ETt
K(t) = 2ET } 5 Torit >> T

(i.e. for the random walk phase)

Note that for a stationary turbulent field, the mean
energy of the flow approachs the mean initial energy of
the drifters. The mean energy of 1000 drifters, E(t), is
plotted in Figure 3 as a function of time. This figure
indicates that the mean energy of drifters decreased
continuously from 0.08¢cm?/sec® in the beginning to
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0.05¢cm?/sec? at t = T (the value of the Lagrangian in-
tegral time scale T is obtained in the next section), and
then decreased to almost 0.006 cm?/sec? at t := 600sec.
As a result of this slowly decaying field, the classical
diffusion theory must be modified. A simple method
is proposed in this study to calculate the Lagrangian
statistics : In the initial dispersion phase (eq. 10a),

the mean initial energy at ¢ = 0, denoted by E,, was
used to calculate D(t) and K(t). In the random walk
phase at ¢t >> T (eq. 10b), the mean energy at t = T,
denoted by Er, was used instead.

T T T
120 240 360

T S 55 2 e <y

time (sec)

Fig.3 Mean energy of particles as a function of time.
The mean initial energy at t=0 and the mean energy
at t=T are also marked.

The Lagrangian velocity correlations, R(t), obtained
from eq. (5), is shown in Figure 4. The Lagrangian in-
tegral time scale, as calculated from eq. (6), was found
to be 45.6 seconds for this experiment. For times less
than the integral time scale, the particles are moving
with a motion that is highly correlated with their initial
velocity, and the value of R(t) is generally greater than
about 0.5. For times much greater than the integral
time scale, R(t) has the form of oscillating sidelobes
with the value ranging between 0.1 and -0.1, thereby
indicating that the particles are moving in the random
walk regime.
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Fig.4 Lagrangian velocity correlation coefficient as a
function of time.

The Lagrangian structure function $(t), computed
from eq.(4), is displayed in Figure 5. In the ideal case
the structure function should increase rapidly to a sat-
uration level, given by S(t) = 2E;, and then remains
constant. This theoretical constant level 2E, is also
plotted in Figure 5 and correlates sufficiently with our
experimental results for ¢ >> T. Babiano et al. [3], in
their theoretical study, concluded that the Lagrangian
structure function saturated at a t? dependency if the
slope n of Lagrangian energy spectra was steeper than
-3, and the structure function followed a t/"I-! depen-
dency if the slope n was between -1 and -3. This finding
is, however, inconsistent with our results of Lagrangian
structure function for t << T'.

The absolute dispersion D(t) is plotted in Figure 6
as a function of time. The asymptotic law of initial
disperison D(t) = 2Et? is obviously verified to extend
from small times to time scale of the order of 7. At
t > 2T, D(t) is seen to have a rather abrupt shift of
slope toward a linear dependency in time. The asymp-
totic linear behavior of absolute dispersion at larger
times, D(t) = 4ErTt, was found to be consistent rea-
sonably well with our experimental results. As men-
tioned earlier, nonstationarity of the statistics was at-
tributed by Freeland et al. (4] as the reason for the dis-
crepancy between their results of float dispersion and
Taylor’s prediction. The present study further con-
firmed the importance of the stationarity in the La-
grangian disperison studied, and has proposed a simple
connection scheme for the decaying turbulence field.
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Fig:6 Absolute dispersion versus time. The two
straight lines represent the theoretical values predicted
by Eq. (10a) and (10b).

The eddy diffusivity K(t), obtained from time dif-
ferentiation of the absolute dispersion D(t), is shown
in Figure 7 as a function of time. At brief time inter-
vals in the initial dispersion regime, K(t), is seen to
have a linear dependency in time which is in excellent

agreement with that predicted by the asymptotic law,
K(t) = 2Eot. At longer time intervals in the random
walk regime, the constant eddy diffusivity 2E7T pre-
dicted by the asymptotic law is also compatible with
the experimental results.
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Fig.7 Eddy diffusivity as a function of time. The
two straight lines are from Eq. (10a) and (10b).

The Lagrangian energy spectra are shown in a log-log
plot in Figure 8. The spectra consist of a low-frequency
plateau which extends up to the cut-off frequency given
by the frequency of the energy-containing eddies. At
higher frequencies, the spectra have a slope close to
—2. Freeland et al. [4] obtained slopes of Lagrangian
energy spectra in 1500m depth like —4. On the other
hand, Colin de Verdiere 7] obtained a well defined —2
spectra slope of Lagrangian velocity spectra from sur-
face drifters in the eastern North Atlantic. Krauss and
Boning (8] also estimated the Lagrangian spectra from
subsurface drifters (at 100m depth) in the North At-
lantic. Their spectra fall off predominantly acccord-
ing to -2, but in some cases are better described by a
slope of -3. Therefore, the value of the spectra slope
determined from our combined experimental-numerical
experiments apparently correlates better with the pre-
vious ocean measurements as deduced from surface or
subsurface drifters. This.also suggests the similarity of
eddy fields between the present laboratory experiments
and the oceanic surface flows.
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cated

CONCLUSIONS

Both the Lagrangian behavior and statistics of
drifters in a quasi-two-dimensional turbulent field have
been experimentally and numerically investigated in
this work. Our results on the single particle dispersion
and Lagrangian eddy diffusivity, at small time intervals
in the initial dispersion phase, are quite consistent with
the prediction of classical diffusion theory (Taylor, [1]).
Due to the slow decay of the turbulence, however, the
calculated Lagrangian statistics at large time intervals,
in the random walk regime, are somewhat smaller than
the predicted results. This discrepancy can be sub-
stantially reduced by substituting the mean particles
energy at the Lagrangian integral time scale into the
asymptotic laws in the random walk regime. Finally,
beyond the cut-off frequency of the eddies the slope of
Lagrangian energy spectra follows a -2 power law.

This is in accordance with the observational results
of Lagrangian velocity spectra as deduced from surface
or subsurface drifters in the oceans. The results ob-
tained in this study will be helpful in describing the
Lagrangian properties of turbulent flows, especially on
the diffusion and mixing of pollutants in the coastal
environmentss where the turbulent fields may not be
fully stationary.
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