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Abstract: This paper is the first in a series of two articles where we report the development of

fast sugar structure prediction software (FSPS). To the best of our knowledge, this is the first

automated tool for the systematic study of conformations of complex oligosaccharides in solution.

In contrast to previously developed molecular builders such as POLYS (Engelsen, S. B.; Cros,

S.; Mackie, W.; Perez, S. Biopolymers 1996, 39, 417-433) where only information about the

minimum energy conformation of disaccharide pairs is considered in order to build larger

oligosaccharides, this tool is based on a systematic search of dihedral conformational space,

optimization of structures using implicit solvation models, explicit molecular dynamics simulations,

NOE calculations, and a very powerful substructure recognition algorithm and database. Our

FSPS can rapidly find minimum-energy conformers and rank them according to different criteria.

Two such criteria are the energy of the conformers in implicit solvent and the root-mean-square

deviation (RMSD) of computed NOEs with respect to experimental data. Even though

experimental NOEs may result from an average over conformers instead of a single structure,

we find that sorting according to NOE RMSD constitutes a better estimator for the global free-

energy minimum structure in explicit solvent (i.e., the most likely structure in solution). In contrast,

the lowest-energy structure in implicit solvent does not usually correspond to the free-energy

minimum. A harmonic approximation to compute free energies of each conformer does not

appear to reverse this conclusion, indicating that either explicit hydrogen bonding to the solvent

or anharmonic effects in the free energy or both are fundamentally important. In the first article,

we discuss our methodology and study, as a proof of concept, a simple substituted disaccharide.

In the second article, we focus on two complex human milk oligosaccharides.

1. Introduction
Carbohydrates are powerful biological markers because they
contain multiple asymmetric carbon centers and possess
unique structures and chemical properties. Complex carbo-
hydrates are involved in numerous molecular recognition
phenomena because of their exquisite specificity in interact-

ing with proteins and other recognition agents. Glyco-
conjugates (glycoproteins and glycolipids) are actively
involved in biological functions like tumor immunology,2

cell growth and differentiation,3 signal transduction,4

apoptosis,5spermatogenesis,6 and T-cell activation.7 Oligo-
saccharides are recognized by different enzymes and by a
family of proteins called lectins. Usually, both enzymes and
lectins only recognize a particular fold of the sugar. This is
why being able to predict the conformation of oligosaccha-
rides in solution is of utmost importance. Unfortunately, only
a small set of sugar-binding proteins have been cocrystallized
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with their corresponding oligosaccharides. It is therefore
desirable to have a computational tool in place that will
predict the conformational structures that sugars can adopt
in solution. This software also constitutes a powerful aid in
the interpretation of nuclear Overhauser effect (NOE) spectra.

Characterization and a priori prediction of conformations
of biologically relevant carbohydrates in solution is difficult.
Typical tools such as UV and IR spectroscopy are not
suitable to study these molecules, and NMR spectra only
give information about sets of statistically averaged confor-
mations on a millisecond time scale. Depending on the free-
energy difference between conformers in solution, the NMR
will be compatible with either a single structure or an
ensemble of flexible structures. Therefore, a theoretical
prediction of the oligosaccharide conformation is usually
necessary to understand the NMR data. In the past, we8,9

and several other groups (for example, see refs 10 and 11)
have performed molecular dynamics (MD) simulations in
order to predict and understand the conformation of carbo-
hydrates in solution. However, this approach has significant
drawbacks. The main problem with using molecular dynam-
ics to study the configuration of complex carbohydrates is
that only certain conformations of these molecules are visited
during the duration of a typical MD run. The challenge is in
some ways similar to that of protein folding. One does not
expect to see a protein fold on a time scale accessible by
computer simulations. This problem is in fact much more
pronounced in the case of sugars because proteins are linear
polymers while oligosaccharides are often branched and
motion of the different branches is often strongly coupled.
It is important to recognize that the problem is not simply
related to the potential energy barrier between different sugar
conformers. This energy is usually low and compatible with
thermal fluctuations at room temperature; the problem for
molecular dynamics simulations is related to entropy.12,13This
is particularly evident in the case of branched saccharides
or sacharides with linkage points that are adjacent.

Although much has been learned from research in the
protein field where extensive libraries14-28 of peptide rota-
mers are available, no such tools currently exist for oligosac-
charide systems. In fact, the problem of designing a rotameric
library is topologically much more complex in the case of
sugars than in the case of peptides. Sugars have many
different linkage points, and their allowed dihedral space not
only depends on the linkages and identities of the two
monosaccharide units but also on the possibility of branching.
Furthermore, recognizing subtrees of connected rings within
a larger tree is in itself a highly complex problem in graph
theory. In this article, we describe how our newly developed
tool overcomes several of these difficulties and delivers
results that are very hard to obtain otherwise with current
computational tools. This will become more evident in the
second paper where we present our results for a pair of
complex human milk sugar oligosaccharides. Several meth-
ods have been used for the structural predictions of oligosac-
charides. Most commonly, molecular dynamics in explicit
solvent is used in order to predict NMR or NOE data in
solution. In our experience,8,9 only disaccharides readily visit
all possible free-energy minima during typical molecular

dynamics runs at room temperature. Larger oligosaccharides
are generally trapped in local basins for longer than tens of
nanoseconds, the length of a typical MD run. This is
particularly true in the case of branched sugars or sugars
with adjacent linkage points.

In the past, our group8,9 has used the following reasonable
scheme to study conformations of complex oligosaccharides
in solution: First, a search through dihedral space of each
independent isolated disaccharide pair is constructed. Long
molecular dynamics runs for each component disaccharide
are performed to obtain free-energy minima. Second, in order
to build all possible oligosaccharides, a combinatorial
approach is used in which all possible free-energy minima
of the component disaccharides are combined to form all
possible oligosaccharide structures. In most cases, many of
the combinations are disallowed because of steric clashes
or bad hydrogen-bond energetics, and only several combina-
tions are obtained. In principle, this seems like a very large
combinatorial problem, but in fact, for biologically relevant
oligosaccharides, only tens or hundreds of structures need
to be scrutinized. Unlike the case of proteins or polypeptides,
sugar monomers are much bulkier, and therefore many
conformations are disallowed, particularly when they are
branched. The third and final step is to study the dynamics
of the different oligosaccharide conformers in order to find
which of these are stable in solution.

Even though the approach described above is reasonable,
there are two main problems with it. First, it is very time-
consuming. It requires long molecular dynamics for all
component disaccharide pairs and further molecular dynam-
ics of the resulting oligosaccharides. Second, this sampling
method assumes that no other structure except those that
correspond to free-energy minima of each disaccharide pair
will be minima in the case of the oligosaccharide. This,
although reasonable, may preclude the existence of other
free-energy minima that appear due to stabilization through
interaction between monomer units that are nonadjacent (i.e.,
stabilization due to secondary structure). This type of
interaction could potentially be very common in the case of
branched oligosaccharides particularly near crowded linkage
points. In section 2, we describe a fast alternative method
that overcomes these difficulties.

2. Simulation Methods
We have developed a completely automatic tool to study
sugar molecules. A considerable part of a systematic search
program involves the elucidation of the topology of poly-
saccharides by using ring perception techniques. Much work
has gone into the development of algorithms for the
determination of the smallest set of smallest rings and other
ensembles of rings representative of a chemical structure.29

However, the problem of ring recognition in carbohydrates
is simpler in that compound rings are an exception to the
norm in carbohydrate chemical structure. As a result, a more
efficient ring perception algorithm can be used. The primary
motivation in ring perception is to enumerate the dihedral
degrees of freedom from glycosidic linkages in the molecule
to allow a search of the conformational space. [Our ring
perception algorithm is implemented through the use of graph
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theoretical methods, and we have developed a C++ graph
class to deal specifically with all aspects of saccharide ring
topology recognition. Atomic coordinates are initially loaded
from a generic XYZ file which contains no residue informa-
tion. A graph object is initialized with vertices and edges
which correspond to the atoms and bonds in an oligosac-
charide. Subsequently, we derive the ring topology of a
complex oligosaccharide by performing a series of depth-
first and breadth-first searches of the graph structure. The
linkages between different rings (monosaccharides) and the
connectivity of side chains are derived using similar methods.
Within the graph object, atoms (vertices) are stored with
specific information which helps to expedite these processes.]
The proverbial systematic search algorithm attempts to visit
every possible conformation. Such an approach quickly
becomes unfeasible even for the most efficient algorithms
on the fastest machines. One way to dampen the effect of
combinatorial explosion is to minimize the search space for
each dihedral degree of freedom during iteration. Sugar
residues, in particular those oligosaccharides relevant to
biology, lend themselves very well to such a procedure
because the allowed conformations of theφ andψ dihedral
angles of a glycosidic linkage are generally constrained to
within approximately 30% or less of the total space. In a
pentasaccharide with four glycosidic linkages, for example,
the overall required search space is reduced to 0.304 ) 0.0081
) 0.81% of its unfiltered size. The reduction is substantially
more important in the case of complex branched oligosac-
charides for which our methodology is intended. In fact, the
allowed number of conformers could be smaller for larger
sugars than for smaller ones. This is the case for the
oligosaccharides discussed in the second paper.

Our systematic approach can be described as a set of
sequential steps:

1. The first step involves complex ring perception.29 The
input is an arbitrary “xyz” file. No atom typing or residue
database is required.

2. A molecule is decomposed into its component oligo-
saccharides fragments. These fragments are checked against
a database (which is currently being populated) using a
sophisticated subtree matching algorithm as described in
section 2.1. If a fragment of the molecule has already been
studied, then no systematic search is carried out on it. This
will save significant amounts of computational time in the
future when the database has many entries. This obviously
amounts to a sophisticated version of a rotameric library in
which monomers are not simply linked sequentially, but the
effect of branching and adjacency is considered through
bonds as well as through space. Rotameric libraries for
proteins usually only have information about pairs of
residues; our approach will store information about larger
sugar subfragments. This is feasible since the number of
sugar monomers in a typical biologically relevant oligomer
is much smaller than the number of amino acids in a protein
and since monosaccharides are in general considerably
bulkier than amino acids. This procedure is most useful in
the case when branching is present since sterics will
significantly restrict conformation space and, consequently,
the number of configurations in space that we need to store.

The case of linear sugars with nonadjacent linkages is the
least interesting to us since the number of configurations to
store becomes exponentially large as the size of the oligo-
saccharide grows.

3. Items not previously studied or stored are separated into
monosaccharide residues and side chains. We then perform
a systematic grid search for the allowedφ-ψ pairs for each
residue linkage and side-chain linkages. The angular incre-
ment can be arbitrarily chosen; we have used 10-20° for
residue linkages and 60-120° for side-chain linkages. After
a clash check using a hard sphere criterion, we obtain
corresponding steric Ramanchandran maps for all residue
and side-chain linkages. Clash checks are only performed
between atoms in different residues, not within the same ring.

4. The oligosaccharide is reconstructed by reassembling
the linkages one by one at corresponding allowed conforma-
tions. At this point, depending on the size of the structure
pool, coarse graining can be applied to constrain the number
of candidate structures. For example, four neighboring points
in Ramachandran space will become a new point which is
calculated as the geometric center of the allowed points. As
opposed to other clustering schemes, this coarse-graining
method is unlikely to miss small isolated regions in config-
uration space.

5. After obtaining the sterically allowed conformations,
we perform energy minimizations using an implicit solvent
model. In this paper and in the second paper, we have used
different software programs30-33 and force fields34,35 to
achieve this.

6. We pool the minimized structures into unique confor-
mational families. We consider that two conformations have
a unique structure if the energy difference∆E < 5.0 kcal/
mol and the difference in each of the dihedral angles is<10°.
We keep the structure with lowest energy in each family,
and we define this as a “unique” conformer.

7. Unique conformers can be sorted on the basis of
different criteria. We have used an energy rank as well as a
rank based on the root-mean-square deviation (RMSD)
between experimental NOE values for proton pairs on
different monosaccharide units and our computed values for
the unique structures. Our approach for computing NOEs is
the same as that used by Cumming and Carver,36,37which is
based on the model-free approach.38,39

8. Finally, we run short 5 ns molecular dynamics simula-
tions in explicit solvent in order to gauge the stability of
each of the different unique conformers and in order to
compute time-averaged NOEs. [A structure is deemed stable
if after 5 ns of simulation glycosidic angles have not changed
to a different local minimum. Clearly, these short simulations
only indicate whether a structure is in a deep local minimum
as compared toKT and not whether the structure is at a global
free-energy minimum. Much more expensive procedures
such as parallel tempering can be applied if accurate relative
free energies between different conformers of complex
oligosaccharides generated by our fast sugar structure predic-
tion software (FSPS) are sought.]

2.1. Sub-Tree Recognition and Database.Because of
the possibility of structural branching in sugars, the act of
querying a database in search of a set of structures most
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similar to the molecule of interest is highly complex. A
practical carbohydrate database query protocol was presented
by Aoki et al.40-43 While their method makes use of a scoring
algorithm to sort matches, the method we use accomplishes
the same task through the use of a slightly more generalized
algorithm which effectively solves the maximum common
subgraph problem for trees with labeled nodes and edges.

The first methods to solve the graph isomorphism problem
were mostly set theoretic in nature.44,45More recently, some
researchers have focused on using the eigenvalues and
eigenvectors associated with the adjacency matrix of a
molecule as a means to distinguish it from others. However,
this method has two limitations. First of all, it does not
explicitly take vertex labels (i.e., atom types) into account.
Second of all, it is only capable of verifying exact matches.

The methodology in our FSPS makes use of association
graphs to solve this problem46 by using an approach
developed by Hopfield which is described in ref 47. In order
to make a molecular-structure-based database query practical,
in this method, a routine which allows the comparison of
two structures to find any substructure in common is used.
The structural information stored in our database is a residue
graph, which is simply the graph generated by viewing each
residue in an oligosaccharide as a vertex and each glycosidic
linkage as an edge between vertices. Residue graphs are the
objects which are compared when a query is made to the
database. This type of comparison is made by solving the
graph isomorphism problem, which seeks to find the
maximum subgraph (i.e., the subgraph containing the largest
number of vertices) present in both graphs. Because the vast
majority of biological oligosaccharides contain no compound
ring structure, the resulting residue graphs are tree graphs
since they are presumed to contain no rings (or cycles). The
algorithm used in this work finds the maximum subtree
common to both oligosaccharides and is derived from a
method by Jain and Wysotski.47 This method is dependent
upon the generation of an association graph, which is
basically a map from one residue graph to another (see Jain
and Wysotski47). The generation of the association graph is
a process in and of itself and can be optimized independently
of the actual search. The main criterion in its optimization
is to make it as small as possible and with as few edges as
possible. Once the association graph is generated, a neural
network algorithm is used to find the maximum clique47 in
the association graph. Maximum cliques correspond to
subsets of vertices in the association graph which map
residues from a new oligosaccharide to those of the structures
already stored in our database. The resulting map points out
common substructures between the molecule from the
database and the molecule of interest. If a match is returned
which is 100% of the size of a molecule in the database,
then the sterically allowed conformational space stored with
this entry in the database is used as an admissible search
space for the mapped portion of the molecule of interest.

The association graph method has the advantage of being
highly customizable. In addition to the ability to take into
account atom types, other information such as atom chirality
and bond type can be used to further eliminate possible
matches. This procedure greatly shrinks the size of the

association graph. New conformations are constructed on the
basis of stored vectors containing coupledφ-ψ information
for each linkage of the oligosaccharide in the database. The
rest of the oligosaccharide is assembled by avoiding clashes
with the database fragment. In the second paper,48 we
describe the use of this method for the analysis of conforma-
tions of complex milk sugars.

3. Results and Discussion: A Simple but
very Important Test Problem
The simplest possible example that can be used in order to
exemplify our procedure and to test the accuracy and validity
of the different approximations involved is a substituted
disaccharide. We have chosenR-D-Man-(1f3)-R-D-Man-
O-Me, with the schematic representation shown in Figure
1, because molecular dynamics simulations in explicit solvent
can be converged to probe its full free-energy landscape on
a several nanosecond time scale. Furthermore, this sugar has
been well-studied by means of the nuclear Overhauser
effect,49 relaxed potential energy surfaces through an exten-
sive molecular mechanics (MM) scheme,50,51 and also as a
fragment of an oligosaccharide via molecular dynamics.52

The full free-energy landscape is not easily accessible for
complex oligosaccharides like those studied in the second
paper. In the case of the current paper, by having the full
free-energy landscape of the molecule as a function of
glycosidic dihedral angles, we are able to probe which sorting
criteria is best (sequential step 7 in section 2) for our FSPS.
Furthermore, because of the small system size, high-level
ab initio calculations using an implicit solvent model can
be carried out to thoroughly test the accuracy of molecular
mechanics energetic predictions.

3.1. Implicit and Explicit Solvent, Force Fields, and ab
Initio Calculations. What Matters and What Does Not
for the Correct Prediction of Sugar Structures in Solu-
tion. 3.1.1. Using MM3 with TINKER.Figure 2 shows the
distribution of unique structures from our systematic search
in φ-ψ glycosidic space using MM334 with TINKER.30,31

The two dihedral angles are defined asφ ) H1-C1-O1-C′3
and ψ ) C1-O1-C′3-H′3 as shown in Figure 1.φ-ψ
torsion angles have been adjusted in steps of 10° over the
whole angular space. At each sterically allowed point, an
energy minimization was performed using the generalized
Born surface area (GBSA) implicit solvent model.53,54

Rotations were also performed for the hydroxymethyl group.
Figure 2a displays the distribution of unique conformations

Figure 1. Schematic representation of the R-D-Man-(1f3)-
R-D-Man-O-Me disaccharide molecule. The two dihedrals
angles are defined as φ ) H1-C1-O1-C′3 and ψ ) C1-O1-
C′3-H′3.
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obtained without any side-chain rotation. Only four mini-
mized conformations are found. However, several other
minima are shown in Figure 2b as we rotate the first dihedral
angle of the hydroxymethyl group. The latter distribution is
consistent with the adiabatically relaxed potential energy
surface of Imberty et al. using the MM2 force field.50

Including a full dihedral search for all hydroxyl groups
instead of only the hydroxymethyl group produces more
mimina (results not shown); however, this is expensive and
does not appear, at least in this particular case, to significantly
modify the energy ordering of the conformers.50

3.1.2. Using GROMACS with the OPLS-AA Force Field
and ab Initio Calculations with GAMESS.At the time of

our simulations, GROMACS32,33 did not offer an implicit
solvent option. The OPLS-AA potential35 appears to show
more local minima than MM3 as can be appreciated in Figure
3; however, these extra minima are at much higher energies.
The four main unique conformations found from our MM3
TINKER calculations are similar to those predicted by OPLS-
AA and appear to keep the same relative energy ordering as
shown in Table 1.

We have also analyzed the relative potential energies of
these four unique conformations by quantum mechanical
(QM) calculations using GAMESS55,56 (Table 1). All QM
calculations in the gas phase and in implicit solvent57,58

appear to indicate that conformation 1 is the lowest-energy

Figure 2. Distribution of unique conformations in φ-ψ glycosidic space in the case of (a) no side-chain rotations and (b) with
120° rotations of the first dihedral angle on any side chain with at least two rotable dihedral angles. Side-chain rotation reveals
more local minima. Energy minimizations were performed using TINKER30,31 with the MM3 force field34 and GBSA implicit solvent
model.53,54

Figure 3. Same as Figure 2 except that the energy minimization is done using GROMACS with the OPLS-AA force field in the
gas phase.

Table 1. The Potential Energy Difference (∆E) and Free Energy Difference (∆G) (kcal/mol) of Each Unique Conformations
in Figure 2a Using Different MM and QM Procedures and Basis Setsa

conf. 1 conf. 2 conf. 3 conf. 4

TINKER(MM3) with GBSA (φ,ψ) (-32.5, 49.6) (-42.7, -26.8) (-23.6, -160.4) (-46.4, 149.4)
∆E 0.0 1.44 1.85 4.79

GROMACS(OPLS-AA) gas phase (φ,ψ) (-44.3, 46.4) (-50.1, -18.3) (-34.6, -159.1) (-52.8, 157.0)
∆E 0.0 2.81 3.47 4.51

GAMESS gas phase (φ,ψ) (-36.5, 48.8) (-50.8, -27.9) (-28.9, -150.1) (-42.7, 158.0)
B3LYP/6 - 31G(d,p) ∆E 0.0 1.99 0.82 3.62
(nvib ) 2) ∆G 0.0 2.71 0.85 4.63
GAMESS implicit solvent (φ,ψ) (-36.1, 45.9) (-50.7, -29.9) (-28.2, -150.7) (-43.5, 159.2)
B3LYP/6 - 31G(d,p)PCM ∆E 0.0 0.63 0.96 4.04
MD GROMACS(OPLS-AA) (φ,ψ) (-38.7, 49.2) (-52.0, -14.0)
with explicit solvent ∆G 0 -3
a MM calculations with MM3 and OPLS-AA show that conformation 1 is the global energy minimum. QM calculations also find that conformation

1 is the global energy minimum. Note that QM calculations in the gas phase change the energy ordering of conformations 2 and 3. On the
contrary, MD simulations in explicit solvent and experiments reveal that conformation 2 is in fact the global free-energy minimum.
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minimum, similarly to what we found in the case of the MM
calculations. We also note that QM calculations in the gas
phase change the energy ordering of conformations 2 and 3.
This does not occur when we use an implicit solvent model.
We have also computed ab initio free energies (Table 1)
using a harmonic approximation. These calculations also pre-
dict conformation 1 to be the one with the lowest free energy.

3.1.3. The NOE Sorting Criteria.The goal of the FSPS is
to predict the most likely structure or structures of oligosac-
charides in solution. In order to evaluate and compare the
four unique conformations (Figure 2) found by our algorithm,
we computed their corresponding NOEs using the procedure
described by Cumming and Carver36,37 from the model-free
approach.38,39 We find that, even though, under the ap-
proximations used here, conformation 1 is the global-energy

and free-energy minimum in implicit solvent, conformation
2 has in fact a NOE closest to the experimental data as shown
in Table 2!

The fact that conformation 2 is indeed the most likely
structure in solution is confirmed by our molecular dynamics
simulations in explicit solvent. In fact, we predict a free-
energy difference of about 3 kcal/mol between conformation
2 and conformation 1 (see subsection 3.1.4). This indicates
that gas-phase energies, energies in implicit solvent, or free
energies computed using a harmonic approximation may not
be an adequate estimator for the most likely structure in
solution. This may be due to anharmonic effects or to
hydrogen bonding with the solvent. It is well-known that
sugars easily form structures stabilized by water-mediated
hydrogen bonds.8

Table 2. Comparison Between Observed and Calculated NOE Values from the R-D-Man-(1f3)-R-D-Man-O-Me
Disaccharidea

NOE observed NOE calculated

conf. 1 conf. 2 conf. 3 conf. 4 MD

proton 1 proton 2 absolute relative abs. rel. abs. rel. abs. rel. abs. rel. abs. rel.

H1 H2 0.11 1.0 0.12 1.0 0.12 1.0 0.12 1.0 0.13 1.0 0.09 1.0
H′3 0.11 1.0 0.18 1.5 0.13 1.08 0.0 0.0 0.0 0.0 0.13 1.4
H2 0.0 0.0 0.0 0.0 -0.01 -0.08 0.01 0.08 0.14 1.08 0.0 0.0
H′4 0.01 0.1 0.04 0.33 0.0 0.0 0.17 1.42 0.0 0.0 0.0 0.0

H′2 H′1 0.065 1.0 0.11 1.0 0.11 1.0 0.10 1.0 0.11 1.0 0.10 1.0
H5 0.04 0.60 0.02 0.18 0.08 0.73 0.0 0.0 0.0 0.0 0.08 0.8

RMSD 1.3 0.65 6.56 1.78 0.63
a The four conformations are those in Figure 2a, and the experimental data are from Reference 49. Clearly, of all unique structures, conformation

2 has the closest NOE values to experimental data as demonstrated by its RMSD. The time-averaged NOE values from all MD trajectories in
Figure 4 are close to that of conformation 2.

Figure 4. Time evolutions of φ and ψ for different unique conformations as shown in Figure 2a using the OPLS-AA force
field and explicit SPC water. Conformations 3 and 4 are not preferred, and conformation 2 is visited more frequently than
conformation 1.
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Since NOE values correspond to an average over an
ensemble of structures, in general, there is not a one-to-one
correspondence between a set of NOE values and a particular
sugar conformation. However, it appears that, at least in the
case of this sugar, free-energy differences in solution between
conformers are large enough that the NOE values are
dominated by only one conformational structure. Our FSPS
can easily enumerate all reasonable minimum-energy struc-
tures. It takes a matter of seconds to sort these structures
according to their root-mean-square deviation with respect
to experimental NOEs. On the basis of our results in this
article and those in the second paper, it appears that this
sorting criterion is a reliable estimator for the most likely
structures in solution.

3.1.4. The Free-Energy Landscape in Explicit SolVent.We
used GROMACS32,33 with the OPLS-AA force field35 in
explicit simple point charge (SPC) water59 to model the
dynamics of our system. We started runs from each of the
four different unique conformations in Table 1. Figure 4
shows the time evolution ofφ andψ for each run. Regardless
of the initial conformation, it is obvious that the molecule
readily transfers between conformations 1 and 2 when the
system reaches equilibrium. Conformations 3 and 4 are not
preferred in water. It is also clear from the plot that molecules
spend more time in conformation 2 than in conformation 1.
The time-averaged NOE values from these four MD trajec-
tories shown in Figure 4 are close to that of unique
conformation 2 as shown in Table 2 and closely coincide
with experiments.

From the time evolution of the dihedral angles, we
computed the free energyf ) - KT ln P(φ,ψ), whereP(φ,ψ)
is the probability distribution ofφ - ψ. In Figure 5, we see
that unique conformation 2 is indeed the global free-energy
minimum with a free-energy difference at 298 K of about 3
kcal/mol with respect to unique conformation 1, which is a
metastable state. Hence, free-energy calculations from ex-
plicit MD coincide with the very inexpensive a priori

prediction of our FSPS on the basis of the deviation of single
unique structure NOE values with respect to experiments.

4. Conclusions
Much can be learned from theR-D-Man-(1f3)-R-D-Man-
O-Me system since it has been fully experimentally char-
acterized and since MD time scales are suitable to correctly
capture the relative probability of all minima and therefore
the corresponding free-energy landscape. It is clear that, in
order to predict which conformer is the most likely in
solution only on the basis of energetics, the correct relative
probability (i.e., the free-energy landscape) of the conformers
must be obtained. This probability landscape was accessible
in this case because the molecule in question is relatively
small and the dynamics is ergodic on the time scale of our
simulations. For larger sugars, particularly branched sugars
or sugars with adjacent linkage points, this brute-force
approach is simply not viable.

Our automatic structure prediction algorithm was able to
capture all corresponding energy minima in a tiny fraction
of the time required to carry out molecular dynamics
simulations long enough to sample them. A simple sorting
criterion based on energies or free energies in implicit solvent
was not adequate to establish a ranking for these conformers
in solution. On the other hand, given the experimental NOEs,
a ranking can be devised on the basis of the RMSD between
these and those computed from our unique structures. The
systematic search algorithm combined with the RMSD
sorting criteria provides an accurate definition for the lowest
free-energy structure without the need to run any expensive
MD simulations. Identifying structure 2 as the most likely
configuration in solution (even though its predicted energy
in an implicit solvent was higher than that of structure 1)
took a minute fraction of the time required to carry out the
MD simulations which later confirmed the result.

Our approach provides a viable way to analyze the
structure of oligosaccharides since, in our experience, for

Figure 5. Free energy calculated from the probability distribution of φ-ψ obtained from the time evolutions shown in Figure 4.
Conformation 2 is the global free-energy minimum in solution, while conformation 1 is the global energy minimum in implicit
solvent and the gas phase. The free-energy difference between these two minima is about 3 kcal/mol at 298 K.
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sugars with six or seven arbitrarily connected rings, the most
relevant energy minima can be obtained within a time scale
of hours. By comparing the NOEs of each of these structures
against experiments, it is fairly easy to establish a ranking
of structures in solution. In the second paper, we show that
our algorithm is able to capture many more stable local
minima than those previously found by carrying out explicit
solvent MD simulations. We will also show that our sorting
criteria indeed capture the most likely structures in solution.
These results are very promising, and we hope that the study
of complex oligosaccharides will become easier as our
database of fragments becomes larger.
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