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The Process That Feeds the Biosphere

= Photosynthesis Is the process that converts solar
energy into chemical energy

= Directly or indirectly, photosynthesis nourishes
almost the entire living world
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= Autotrophs sustain themselves without eating
anything derived from other organisms

= Autotrophs are the producers of the biosphere,
producing organic molecules from CO, and other
Inorganic molecules

= Almost all plants are photoautotrophs, using the
energy of sunlight to make organic molecules
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Figure 11.1
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Figure 11.1a

Other organisms also benefit from
photosynthesis.
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= Photosynthesis occurs In plants, algae, certain
other unicellular eukaryotes, and some

prokaryotes

= These organisms feed not only themselves but
also most of the living world
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Figure 11.2
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(c) Unicellular eukaryotes
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Figure 11.2a
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Figure 11.2b

(b) Multicellular alga
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Figure 11.2c
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Figure 11.2d
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Figure 11.2e

H L g
(e) Purple sulfur
bacteria

C.B. Van Niel — 1930’s

Observed photosynthesis in purple sulfur
bacteria

CO, + 2H,S + light energy => (CH,0) + H,O + 28

Van Niel then generalized this to the following

reaction for all photosynthetic activity
CO, + 2H,A + light energy => (CH,0) + H,0 + 2A
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= ¥ Rtautotrophs

= Heterotrophs obtain their organic material from
other organisms

= Heterotrophs are the consumers of the biosphere

= Almost all heterotrophs, including humans, depend
on photoautotrophs for food and O,

© 2014 Pearson Education, Inc.



O
= Earth’s supply of fossil fuels was formed from the
remains of organisms that died hundreds of
millions of years ago

= In a sense, fossil fuels represent stores of solar

energy from the distant past
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Figure 11.3

Carbon dioxide,
nutrients
and sunlight

Oxygen

e ®

4 Fats (oils) grow 2 Algae oil is extracted 3 Algae oil converied 4 Algae bodiesel
inside algae to biodiesel placed in the market
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Concept 11.1: Photosynthesis converts light
energy to the chemical energy of food

= Chloroplasts are structurally similar to and likely
evolved from photosynthetic bacteria Ez4% &=

= The structural organization of these organelles
allows for the chemical reactions of
photosynthesis B stroma fHEE i

thylakoid

outer membrane
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Figure 11.4
Leaf cross section

Chloroplasts Vein

Mesophyll

Mesophyll

h hIoropIast
\ cell
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membrane
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Stroma Granum Space space
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Chloroplasts: The Sites of Photosynthesis
In Plants

Leaves are the major locations of photosynthesis

Chloroplasts are found mainly in cells of the
mesophyll, the interior tissue of the leaf

Each mesophyll cell contains 30—40 chloroplasts

CO, enters and O, exits the leaf through
microscopic pores called stomata
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Figure 11.4a ]
Leaf cross section
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Figure 11.4d

Mesophyll
cell

20 MM
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= A chloroplast has an envelope of two membranes
surrounding a dense fluid called the stroma

= Thylakoids are connected sacs in the chloroplast
which compose a third membrane system

= Thylakoids may be stacked in columns called
grana

= Chlorophyll, the pigment which gives leaves their
green colour, resides in the thylakoid membranes

© 2014 Pearson Education, Inc.



Figure 11.4b
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space

Inner
membrane
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Figure 11.4c

Stroma Granum
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Tracking Atoms Through Photosynthesis:
Scientific Inquiry

= Photosynthesis is a complex series of reactions
that can be summarized as the following equation:

6 CO, + 12 H,O + Light energy — C;H,,0, + 6 O, + 6 H,O

= The overall chemical change during
photosynthesis Is the reverse of the one that
occurs during cellular respiration
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The Splitting of Water

= Chloroplasts split H,O into hydrogen and oxygen,
Incorporating the electrons of hydrogen into sugar
molecules and releasing oxygen as a by-product
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Figure 11.5

Reactants: 6 CO, 12 H,0O

Products: CsH1204 6 H,O 6O,
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Photosynthesis as a Redox Process

= Photosynthesis reverses the direction of electron
flow compared to respiration

= Photosynthesis is a redox process in which H,O Is
oxidized and CO, is reduced

= Photosynthesis is an endergonic process; the
energy boost is provided by light
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Figure 11.UNO1

’—becomes reduced —l
Energy + 6 002 + 6 H20 —>CGH1205 + 6 02

\—becomes oxidized 41\
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The Two Stages of Photosynthesis: A Preview

= Photosynthesis consists of the light reactions

(the photo part) and Calvin cycle (the synthesis
part)

= The light reactions (in the thylakoids)
= Split H,0O
" Release O,

= Reduce the electron acceptor NADP+to NADPH
= Generate ATP from ADP by photophosphorylation

© 2014 Pearson Education, Inc.



= The Calvin cycle (in the stroma) forms sugar from
CO,, using ATP and NADPH

= The Calvin cycle begins with carbon fixation,
Incorporating CO, into organic molecules
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Figure 11.6-1

Light
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Figure 11.6-2

 Thylakoid

Chloroplast
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Figure 11.6-3
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Figure 11.6-4
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BioFlix: The Carbon Cycle

W 2008 Foarson Education, Ing
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BioFlix: Photosynthesis
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Concept 11.2: The light reactions convert solar
energy to the chemical energy of ATP and
NADPH

= Chloroplasts are solar-powered chemical factories

= Their thylakoids transform light energy into the
chemical energy of ATP and NADPH

Plastocyanin

Stroma Plastoquinone

.....
-.-L_._.-'-'l'i-il-l'-l-l-l'u ATy N e e T

Cytochrome béf

NADP reductase

Ferredoxin Photosystem I Oxygen-evolving complex
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The Nature of Sunlight

Light is a form of electromagnetic energy, also
called electromagnetic radiation

Like other electromagnetic energy, light travels In
rhythmic waves

Wavelength is the distance between crests
of waves

Wavelength determines the type of
electromagnetic energy
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The electromagnetic spectrum is the entire
range of electromagnetic energy, or radiation

Visible light consists of wavelengths (including
those that drive photosynthesis) that produce
colors we can see

Light also behaves as though it consists of
discrete particles, called photons
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Figure 11.7
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Photosynthetic Pigments: The Light Receptors
B

= Pigments are substances that absorb visible light

= Different pigments absorb different wavelengths

= Wavelengths that are not absorbed are reflected
or transmitted

= Leaves appear green because chlorophyll reflects
and transmits green light
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Figure 11.8
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S
Animation: Light and Pigments

Light
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= A spectrophotometer measures a pigment’s
ability to absorb various wavelengths

= This machine sends light through pigments and
measures the fraction of light transmitted at each

wavelength
Collimator Wavelength Selector Detector
(Lens) (Slit) (Photocell)

Digital Display
Light source Monochromator Sample or Meter
(Prism or Grating) Solution

(in Cuvette)
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Figure 11.9
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Figure 11.10
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= An absorption spectrum is a graph plotting a
pigment’s light absorption versus wavelength

= The absorption spectrum of chlorophyll a
suggests that violet-blue and red light work best
for photosynthesis

= An action spectrum profiles the relative
effectiveness of different wavelengths of radiation
In driving a process
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Figure 11.10a
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Figure 11.10b
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The action spectrum of photosynthesis was first
demonstrated in 1883 by Theodor W. Engelmann

In his experiment, he exposed different segments
of a filamentous alga to different wavelengths

Areas receiving wavelengths favorable to
photosynthesis produced excess O,

He used the growth of aerobic bacteria clustered
along the alga as a measure of O, production
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Figure 11.10c

oxygen seeking bacteria B. termo
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(c) Engelmann’s experiment
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Why so many chlorophyll pigments?

In response to different wavelength in
the environment!

1. shading

2. under forest

Chl b/Chl a increases (Chl b content
Increases)



© 2014 Pearson

Chlorophyll a is the main photosynthetic
pigment

Chlorophyll b, broaden the spectrum used for
photosynthesis

The difference in the absorption spectrum
between chlorophyll a and b is due to a slight
structural difference between the pigment
molecules

Accessory pigments called carotenoids
absorb excessive light that would damage
chlorophyll

Education, Inc.



Figure 11.11
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CH3 in chlorophyll a
CHO in chlorophyll b

C—CH,—CH, Porphyrin ring:

light-absorbing
“head” of molecule;
note magnesium
atom at center

>~Hydrocarbon tail:
Interacts with hydrophobic

regions of proteins inside
thylakoid membranes of
chloroplasts; H atoms not

shown



Video: Space-Filling Model of Chlorophyll a




= Accessory pigments called carotenoids function
In photoprotection; they absorb excessive light
that would damage chlorophyll
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Photosynthetic pigments are associated with membrane proteins

stroma
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Phycobiliprotein:
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Phycobilisome;Zf

R

= H 5= in cyanobacteria

These antennae (called "phycobilisomes" in Synechococcus) are composed of
pigment-proteins complexes arranged in such a way to capture light with a high
efficiency. Pigments that are bound to antenna systems may have very different colour:
(such as green, blue, pink or orange) and this will determine the wavelengths of the
solar spectrum that cells can efficiently harvest in the oceanic waters.
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complementary chromatic

Structure of a hemidiscoidal ad aptatl on . .

phycobilisome of Tolypothrix tenuis
under different light conditions. (a) When
illuminated by white light, the
phycobilisome contains phycoerythrin,
phycocyanin, and allophycocyanin.
Energy absorbed by phycoerythrin is
transferred to phycocyanin and
allophycocyanin. The allophycocyanin
core proteins are attached, via a linker
protein, to the photosynthetic membrane,
which is not shown. (b) When
illuminated by red light, the
phycobilisome undergoes
complementary chromatic adaptation, in
which phycoerythrin is no longer
produced but additional phycocyanin is
produced. (After R. MacColl and D.
Guard-Friar, Phycobiliproteins, CRC
Press, Boca Raton, FL, 1987)
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Excitation of Chlorophyll by Light

When a pigment absorbs light, it goes from a
ground state to an excited state, which is unstable

When excited electrons fall back to the ground
state, photons are given off, an afterglow called
fluorescence

If illuminated, an isolated solution of chlorophyll
will fluoresce, giving off light and heat
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Figure 11.12
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(a) Excitation of isolated chlorophyll molecule (b) Fluorescence
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Figure 11.12a

(b) Fluorescence
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Electron transport chain (ETC)
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A Photosystem: A Reaction-Center Complex
Associated with Light-Harvesting Complexes

A photosystem consists of a reaction-center
complex (a type of protein complex) surrounded
by light-harvesting complexes

The light-harvesting complexes=Lhc (pigment
molecules bound to proteins) transfer the energy
of photons to the reaction center
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Figure 11.13
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Figure 11.13a
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Figure 11.13b
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(b) Structure of a photosystem
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Photosystem Il (PSII)

Photosystem Il contains chlorophylls a and b and absorbs light at

680nm. This is a large protein complex that is located in the thylakoid

membrane.
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LHC-11

= MOST ABUNDANT MEMBRANE PROTEIN IN
CHLOROPLASTS OF GREEN PLANTS

= A TRANSMEMBRANE PROTEIN

= BINDS
~ 7/ CHLOROPHYLL a MOLECULES

~ 5 CHLOROPHYLL b MOLECULES
TWO CAROTENOIDS

= COMPRISES ABOUT 50% OF ALL CHLOROPHYLL
IN BIOSPHERE
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= A primary electron acceptor in the reaction

center accepts excited electrons and is reduced as

a result

= Solar-powered transfer of an electron from a
chlorophyll a molecule to the primary electron
acceptor is the first step of the light reactions
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= There are two types of photosystems in the
thylakoid membrane

= Photosystem Il (PS Il) functions first (the
numbers reflect order of discovery) and is best at
absorbing a wavelength of 680 nm

= The reaction-center chlorophyll a of PS Il is called
P680
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= Photosystem | (PS I) is best at absorbing a
wavelength of 700 nm

= The reaction-center chlorophyll a of PS I is called
P700
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Linear Electron Flow

= During the light reactions, there are two possible
routes for electron flow: cyclic and linear

= Linear electron flow, the primary pathway,
Involves both photosystems and produces ATP
and NADPH using light energy

Photon Photon

Photosystem | -NADP+ +® -ﬂnjl
&, -
[?( - -

(3 e e 6
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= There are 8 steps in linear electron flow:

1. A photon hits a pigment and its energy Is passed
among pigment molecules until it excites P680

2. An excited electron from P680 is transferred to the
primary electron acceptor (we now call it P680+)

© 2014 Pearson Education, Inc.



Figure 11.UNO2
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Figure 11.14-1
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Figure 11.14-2
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Figure 11.14-3
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Figure 11.14-4
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Figure 11.14-5
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The Z-scheme of the Light Reactions: An Energy Diagram

20 reducing




3. H,O is split by enzymes, and the electrons are

© 2014 Pearson

transferred from the hydrogen atoms to P680+,
thus reducing it to P680

= P680" Is the strongest known biological oxidizing
agent

= O, Is released as a by-product of this reaction
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4. Each electron “falls” down an electron transport
chain from the primary electron acceptor of PS Il
to PS |

5. Energy released by the fall drives the creation of a
proton gradient across the thylakoid membrane

Diffusion of H* (protons) across the membrane
drives ATP synthesis
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6. In PS | (like PS 1), transferred light energy excites
P700, which loses an electron to an electron
acceptor

= P700* (P700 that is missing an electron) accepts
an electron passed down from PS |l via the
electron transport chain
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/. Each electron “falls” down an electron transport
chain from the primary electron acceptor of PS |
to the protein ferredoxin (Fd)

8. The electrons are then transferred to NADP+ and
reduce it to NADPH

The electrons of NADPH are available for the
reactions of the Calvin cycle

This process also removes an H* from the stroma

© 2014 Pearson Education, Inc.



= The energy changes of electrons during linear flow
through the light reactions can be shown in a
mechanical analogy
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Figure 11.15
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Cyclic Electron Flow

= In cyclic electron flow, electrons cycle back from
Fd to the PS | reaction center

= Cyclic electron flow uses only photosystem | and
produces ATP, but not NADPH

= No oxygen is released
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Figure 11.16

Photosystem Il

© 2014 Pearson Education, Inc.

e

=~ Primary

acceptor

Cytochrome
complex

OO0 0
Q0

)

@

NADP?*

NADP™*
+H*

reductase

%

Photosystem |

NADPH




= Some organisms such as purple sulfur bacteria
have PS | but not PS Il

= Cyclic electron flow Is thought to have evolved
before linear electron flow

= Cyclic electron flow may protect cells from
light-induced damage
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A Comparison of Chemiosmosis in Chloroplasts
and Mitochondria

Chloroplasts and mitochondria generate ATP by
chemiosmosis, but use different sources of energy

Mitochondria transfer chemical energy from food
to ATP; chloroplasts transform light energy into the
chemical energy of ATP

Spatial organization of chemiosmosis differs
between chloroplasts and mitochondria but also
shows similarities
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In mitochondria, protons are pumped to the
Intermembrane space and drive ATP synthesis as
they diffuse back into the mitochondrial matrix

In chloroplasts, protons are pumped into the
thylakoid space and drive ATP synthesis as they
diffuse back into the stroma
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Figure 11.17
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ATP and NADPH are produced on the side facing
the stroma, where the Calvin cycle takes place

In summary, light reactions generate ATP and
Increase the potential energy of electrons by
moving them from H,O to NADPH
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Figure 11.18
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Figure 11.18a
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Figure 11.18b
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Concept 11.3: The Calvin cycle uses the
chemical energy of ATP and NADPH to reduce
CO, to sugar

The Calvin cycle, like the citric acid cycle,
regenerates its starting material after molecules
enter and leave the cycle

The cycle builds sugar from smaller molecules by
using ATP and the reducing power of electrons
carried by NADPH
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Carbon enters the cycle as CO, and leaves as a
sugar named glyceraldehyde 3-phospate (G3P)

For net synthesis of 1 G3P, the cycle must take
place three times, fixing 3 molecules of CO,
The Calvin cycle has three phases

1. Carbon fixation (catalyzed by rubisco)
2. Reduction

3. Regeneration of the CO, acceptor (RuBP)
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Figure 11.19-1
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Figure 11.19-2
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Figure 11.19-3
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Concept 11.4: Alternative mechanisms of
carbon fixation have evolved in hot, arid
climates

Dehydration is a problem for plants, sometimes
requiring trade-offs with other metabolic
processes, especially photosynthesis

On hot, dry days, plants close stomata, which
conserves H,O but also limits photosynthesis

The closing of stomata reduces access to CO, and
causes O, to build up

These conditions favor an apparently wasteful
process called photorespiration
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Photorespiration: C2 cycle
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Photorespiration: An Evolutionary Relic?

In most plants (C; plants), initial fixation of CO,,
via rubisco, forms a three-carbon compound

(3-p
In p

nosphoglycerate)

notorespiration, rubisco adds O, instead of

CO, in the Calvin cycle, producing a two-carbon
compound

Photorespiration consumes O, and organic fuel

and

releases CO, without producing ATP or sugar
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= Photorespiration may be an evolutionary relic
because rubisco first evolved at a time when the
atmosphere had far less O, and more CO,

= Photorespiration limits damaging products of
light reactions that build up in the absence of
the Calvin cycle

* In many plants, photorespiration is a problem
because on a hot, dry day it can drain as much
as 50% of the carbon fixed by the Calvin cycle
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C, Plants

C, plants minimize the cost of photorespiration by
iIncorporating CO, into four-carbon compounds

There are two distinct types of cells in the leaves
of C, plants:

Bundle-sheath cells are arranged in tightly packed
sheaths around the veins of the leaf

Mesophyll cells are loosely packed between the
bundle sheath and the leaf surface
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Sugar production in C, plants occurs in a three-
step process:

1. The production of the four carbon precursors is
catalyzed by the enzyme PEP carboxylase in
the mesophyll cells

PEP carboxylase has a higher affinity for CO,
than rubisco does; it can fix CO, even when CO,
concentrations are low

© 2014 Pearson Education, Inc.



2. These four-carbon compounds are exported to
bundle-sheath cells

3. Within the bundle-sheath cells, they release CO,
that is then used in the Calvin cycle
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Figure 11.20
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Figure 11.20a
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Figure 11.20b
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Since the Industrial Revolution in the 1800s,
CO, levels have risen greatly

Increasing levels of CO, may affect C; and C,
plants differently, perhaps changing the relative
abundance of these species

The effects of such changes are unpredictable
and a cause for concern
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CAM Plants

Some plants, including succulents, use
crassulacean acid metabolism (CAM) to
fix carbon

CAM plants open their stomata at night,
iIncorporating CO, into organic acids

Stomata close during the day, and CO, Is released
from organic acids and used in the Calvin cycle
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Figure 11.21
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Figure 11.21a
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Figure 11.21b
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The Importance of Photosynthesis: A Review
The energy entering chloroplasts as sunlight gets
stored as chemical energy in organic compounds

Sugar made in the chloroplasts supplies chemical
energy and carbon skeletons to synthesize the
organic molecules of cells

Plants store excess sugar as starch in structures
such as roots, tubers, seeds, and fruits

In addition to food production, photosynthesis
produces the O, In our atmosphere
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Figure 11.22a
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Figure 11.22b
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Figure 11.23
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Figure 11.23a
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Figure 11.23b
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Figure 11.23c
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Figure 11.UNO4a
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Figure 11.UNO4b
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Figure 11.UNO5
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Figure 11.UNO6
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Figure 11.UNO7
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Figure 11.UNO8

© 2014 Pearson Education, Inc.



2 Acetyl Co-A
y AACT

Acetoacetyl-CoA
\lf HM&S

HMG-CoA
Vv HMGR

MVA
v MVK

MVP
v PMK

MVPP

Cytoplasm

IDI
DMAPP é}

3xIPP

FDS
Farnesyl-diphosphate (FPP)

AT
-

\
! Y
Ed Y e
Y
,’ i \ ‘\ .i

. E /; o Polyterpenes
Sesquiterpenes  Sterols .
Triterpenes N
4

UBIQUINONE-9 (Q,)
UBIQUINONE-10 (Q,q

© 2014 Pearson Education, Inc.

IElf=ne==

--------------

G3P + Pyruvate
J, DXS

DXP
mep | DXR
* pathwa
- PATOWEY ep

¢MCT

CDP-ME
¥ CMK

CDP-MEP
Vv MCS

ME-cPP

LCY —,I.';l
Lycopene

LY

)



porphyrin ring

phytol tail

Chlorophylls consist of a light-absorbing with a magnesium atom
at the center and a long phytol tail that anchors the molecule in a
membrane (Figure 1). They absorb light in the blue and red parts
of the spectrum, but the green wavelengths are transmitted or
reflected.
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