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A Survey of Plant Hormones

The major plant hormones include
Auxin
Cytokinins
Gibberellins
Abscisic acid

Ethylene
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Table 39.1

Table 39.1 Overview of Plant Hormones

Hormone

Auxin (IAA)

Cytokinins

Gibberellins (GA)

Abscisic acid (ABA)

Ethylene

Brassinosteroids

Jasmonates

Strigolactones
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Where Produced or Found in Plant

Shoot apical meristems and young leaves are the primary
sites of auxin synthesis. Root apical meristems also pro-
duce auxin, although the root depends on the shoot for
much of its auxin. Developing seeds and fruits contain
high levels of auxin, but it is unclear whether it is newly
synthesized or transported from maternal tissues.

These are synthesized primarily in roots and transported
to other organs, although there are many minor sites of
production as well.

Meristems of apical buds and roots, young leaves, and de-
veloping seeds are the primary sites of production.

Almost all plant cells have the ability to synthesize abscisic
acid, and its presence has been detected in every major
organ and living tissue; it may be transported in the
phloem or xylem.

This gaseous hormone can be produced by most parts of
the plant. It is produced in high concentrations during se-
nescence, leaf abscission, and the ripening of some types
of fruits. Synthesis is also stimulated by wounding and
stress.

These compounds are present in all plant tissues, al-
though different intermediates predominate in different
organs. Internally produced brassinosteroids act near the
site of synthesis.

These are a small group of related molecules derived from
the fatty acid linolenic acid. They are produced in several
parts of the plant and travel in the phloem to other parts
of the plant.

These carotenoid-derived hormones and extracellular sig-
nals are produced in roots in response to low phosphate
conditions or high auxin flow from the shoot.

Major Functions

Stimulates stem elongation (low concentration only);
promotes the formation of lateral and adventitious roots;
regulates development of fruit; enhances apical domi-
nance; functions in phototropism and gravitropism; pro-
motes vascular differentiation; retards leaf abscission

Regulate cell division in shoots and roots; modify apical
dominance and promote lateral bud growth; promote
movement of nutrients into sink tissues; stimulate seed
germination; delay leaf senescence

Stimulate stem elongation, pollen development, pollen
tube growth, fruit growth, and seed development and
germination; regulate sex determination and the transi-
tion from juvenile to adult phases

Inhibits growth; promotes stomatal closure during
drought stress; promotes seed dormancy and inhibits early
germination; promotes leaf senescence; promotes desicca-
tion tolerance

Promotes ripening of many types of fruit, leaf abscission,
and the triple response in seedlings (inhibition of stem
elongation, promotion of lateral expansion, and horizon-
tal growth); enhances the rate of senescence; promotes
root and root hair formation; promotes flowering in the
pineapple family

Promote cell expansion and cell division in shoots; pro-
mote root growth at low concentrations; inhibit root
growth at high concentrations; promote xylem differen-
tiation and inhibit phloem differentiation; promote seed
germination and pollen tube elongation

Regulate a wide variety of functions, including fruit ripen-
ing, floral development, pollen production, tendril cailing,
root growth, seed germination, and nectar secretion; also
produced in response to herbivory and pathogen invasion

Promote seed germination, control of apical dominance,
and the attraction of mycorrhizal fungi to the root



AuXin

Any response resulting in curvature of organs
toward or away from a stimulus is called a
tropism

In the late 1800s, Charles Darwin and his son
Francis conducted experiments on phototropism,
a plant’s response to light

They observed that a grass seedling could bend
toward light only if the tip of the coleoptile was
present
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They postulated that a signal was transmitted from
the tip to the elongating region

In 1913, Peter Boysen-Jensen demonstrated that
the signal was a mobile chemical substance
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Figure 39.5
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Figure 39.5a
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Figure 39.5b
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Figure 39.5¢
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Video: Phototropism

Phototropism in the Mung bean
(Vigna radiata)
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From experiments on
coleoptile phototropism,
Darwin concluded in 1880
that a growth stimulus is
produced in the coleoptile
tip and is transmitted to the
growth zone.

In 1913, P. Boysen-
Jensen discovered that
the growth stimulus
passes through gelatin
but not through
water-impermeablea
barriers such as mica.

In 19219, A. Paal provided
evidence that the growth-
promoting stimulus
produced in the tip was
chemical in nature.

In 1926, F. W. Went showed
that the active growth-
promoting substance can
diffuse into a gelatin block.
He also devised a
coleoptile-bending assay for
quantitative auxin analysis.
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Polar transport

Permease
H*-cotransport

2. The cell wall is maintained
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ATPase,
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polar auxin transport. Shown here is one &
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The term auxin refers to any chemical that
promotes elongation of coleoptiles

Indoleacetic acid (IAA) Is a common auxin In
plants; In this lecture the term auxin refers
specifically to IAA

Auxin Is produced In shoot tips and Is transported
down the stem

Auxin transporter proteins move the hormone from
the basal end of one cell into the apical end of the
neighboring cell
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Figure 39.6
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Figure 39.6a
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Figure 39.6b
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acid growth theory

(A) (B)

FIGURE 19.2 Auxin stimulates the elongation of oat coleoptile sections. These
coleoptile sections were incubated for 18 hours in either water (A) or auxin (B). The
yellow tissue inside the translucent coleoptile is the primary leaves. (Photos ©

M. B. Wilkins.)



The Role of Auxin in Cell Elongation

According to the acid growth hypothesis, auxin
stimulates proton pumps in the plasma membrane

The proton pumps lower the pH in the cell wall,
activating expansins, enzymes that loosen the
wall’s fabric

With the cellulose loosened, the cell can elongate
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Figure 39.7
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Figure 39.7b
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Auxin also alters gene expression and stimulates
a sustained growth response
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Auxin’s Role in Plant Development

Polar transport of auxin plays a role in pattern formation of
the developing plant

Reduced auxin flow from the shoot of a branch stimulates
growth in lower branches

Auxin transport plays a role in phyllotaxy, the arrangement
of leaves on the stem

Polar transport of auxin from leaf margins directs leaf
venation pattern

The activity of the vascular cambium is under control of
auxin transport

© 2014 Pearson Education, Inc.



Practical Uses for Auxins

The auxin indolbutyric acid (IBA) stimulates
adventitious roots and Is used In vegetative
propagation of plants by cuttings

An overdose of synthetic auxins can kill plants

For example 2,4-D is used as an herbicide on
eudicots
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Cytokinins

Cytokinins are so named because they stimulate
cytokinesis (cell division)
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Cytokinin
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FIGURE 21.4 Tumor induclion by Agrobacterium tumefaciens. (After Chilton 1983.)
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Control of Cell Division and Differentiation

Cytokinins are produced In actively growing
tissues such as roots, embryos, and fruits

Cytokinins work together with auxin to control cell
division and differentiation
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Control of Apical Dominance

Cytokinins, auxin, and strigolactone interact in the
control of apical dominance, a terminal bud’s
ability to suppress development of axillary buds

If the terminal bud is removed, plants become
bushier
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Figure 39.8
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Figure 39.8a

Axillary buds

(a) Apical bud intact (not shown in photo)
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Figure 39.8b

Lateral branches

“Stump” after
removal of
apical bud

(b) Apical bud removed
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Figure 39.8c

(c) Auxin added to decapitated stem
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Gibberellin

FIGURE 20.5 Gibberellin causes
elongation of the leaf sheath of
rice scedlings, and this response
is used in the dwarf rice leat
sheath bioassay. Here 4-day-old
scedlings were treated with dif-
ferent amounts of GA and
allowed to grow for another 5
days. (Courtesy of P. Davies.)
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Anti-Aging Effects

Cytokinins slow the aging of some plant organs by
Inhibiting protein breakdown, stimulating RNA and
protein synthesis, and mobilizing nutrients from
surrounding tissues
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Gibberellins

Gibberellins have a variety of effects, such as
stem elongation, fruit growth, and seed
germination
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Stem Elongation

Gibberellins are produced in young roots and
leaves

Gibberellins stimulate growth of leaves and stems

In stems, they stimulate cell elongation and cell
division

© 2014 Pearson Education, Inc.



PROCEEDNGS OF THE WIORSHOP O

deepacater
ru-e __

© 2014 Pearson Education, Inc.



Deepwater rice-vietham

Waler depdin {om)

. L e
b & A
I i 'y "f P L
: " 1 E l\.'\-l ¥ _'I.._."T'-'--.-
‘1”‘ 1] ] Moy E— — FES —————p
Prfloa Flond Pestiood
; SAmoTs &5 months usualy 1-2 wesks
ncla — 0 pm = | mm == { mm S

© 2014 Pearson Education, Inc.



Figure 39.9

(b) Grapes from control vine
(left) and gibberellin-
treated vine (right)

(a) Rosette form (left) and
gibberellin-induced bolting 1242

(right)
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Figure 39.9a

(a) Rosette form (left) and
gibberellin-induced bolting

(right)
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Figure 39.9b

(b) Grapes from control vine
(left) and gibberellin-
treated vine (right)
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Fruit Growth

In many plants, both auxin and gibberellins must
be present for fruit to develop

Gibberellins are used in spraying of Thompson
seedless grapes
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Germination

After water Is imbibed, release of gibberellins from
the embryo signals seeds to germinate
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Figure 39.10
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FIGURE 20.33 Structure of a barley grain and the functions
of various tissues during germination (A). Microscope pho-
tos of the barley alcurone layer (B) and barley aleurvne pro-
toplasts at an early (C) and late stagce (D)} of amylase pro-
duction. Protein storage vesicles (PSV) can be seen in cach
cell. G = phytin globoid; N = nucleus. (Photos from Bethke
et al. 1997, courtesy of I’. Bethke.)
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Abscisic Acid

Abscisic acid (ABA) slows growth

Two of the many effects of ABA
Seed dormancy

Drought tolerance
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FIGURE 23.3 [I'recocious germination in the ABA-deflicient
opl4 mutant of maize. The VP14 protein catalyzes the
cleavage of 9-cis-epoxycarotenoids to form xanthoxal,

a precursor of ABA. (Courtesy of Bao Cai Tan and Don
McCarty.)
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Seed Dormancy

Seed dormancy ensures that the seed will
germinate only in optimal conditions

In some seeds, dormancy Is broken when ABA is
removed by heavy rain, light, or prolonged cold

Precocious (early) germination can be caused by
Inactive or low levels of ABA
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Figure 39.11
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Figure 39.11a
<4 Red mangrove

(Rhizophora mangle)
seeds
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Figure 39.11b
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Drought Tolerance

ABA is the primary internal signal that enables
plants to withstand drought

ABA accumulation causes stomata to close rapidly
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Ethyl
yiene HY_%L:% /I_/Ia
108.7 pm
H 133.9 pm H

Plants produce ethylene in response to stresses
such as drought, flooding, mechanical pressure,
Injury, and infection

The effects of ethylene include response to
mechanical stress, senescence, leaf abscission,
and fruit ripening
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~__ The Role of Ethylene in
|| ] Post Harvest Biology

Name : TW.G.F.A Nijamdeen
Rep. No: 612260302
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' . Climacteric fruits

Eg:
Banana Apple Avocado, Tomato, Mango,
Aprncol,pears

Non-Climacteric fruits
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Eg:
Strawberry,Cucumber, Eggplant,Grape,Ora
nge.
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| I Ethylene-Structure and Biosynthesis
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The Triple Response to Mechanical Stress

= Ethylene induces the triple response, which allows
a growing shoot to avoid obstacles

= The triple response consists of a slowing of stem
elongation, a thickening of the stem, and
horizontal growth
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Figure 39.12

Ethylene concentration (parts per million)
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Ethylene-insensitive mutants fail to undergo the
triple response after exposure to ethylene

Other mutants undergo the triple response in air
but do not respond to inhibitors of ethylene

synthesis
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Rice coleoptile elongation — anoxia and
ethylene
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Figure 39.13
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Figure 39.13a

/ ein mutant

(a) ein mutant
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Figure 39.13b

ctr mutant

(b) ctr mutant
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Senescence

Senescence Is the programmed death of cells or
organs

A burst of ethylene Is associated with apoptosis,
the programmed destruction of cells, organs, or

whole plants
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Leaf Abscission

A change In the balance of auxin and ethylene
controls leaf abscission, the process that occurs in
autumn when a leaf falls
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Figure 39.14
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Figure 39.14a
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Fruit Ripening

A burst of ethylene production in a fruit triggers the
ripening process

Ethylene triggers ripening, and ripening triggers
release of more ethylene

Fruit producers can control ripening by picking
green fruit and controlling ethylene levels
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More Recently Discovered Plant Hormones

= Brassinosteroids are chemically similar to the
sex hormones of animals

= They induce cell elongation and division in stem
segments

= They slow leaf abscission and promote xylem
differentiation
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= Jasmonates, including jasmonate (JA) and methyl

Jasmonate (MeJA) play important roles in plant
defense and development

= They are produced In response to wounding and
Involved in controlling plant defenses

18 carb I turated
PLANT ht:::;;llﬂwﬂﬂ ura —  |aSMOnates

H

a-linolenic acid Jasmonic acid
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Jasmonates also regulate many other physiological
processes, including

Nectar secretion

Fruit ripening

Pollen production
Flowering time

Seed germination
Root growth

Tuber formation
Mycorrhizal symbiosis

Tendril coiling
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= Strigolactones are xylem-mobile chemicals that
= Stimulate seed germination
= Suppress adventitious root formation

= Help establish mycorrhizal associations

= Help control apical dominance

= Strigolactones are named for parasitic Striga
plants

= Striga seeds germinate when host plants exude
strigolactones through their roots

© 2014 Pearson Education, Inc.
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