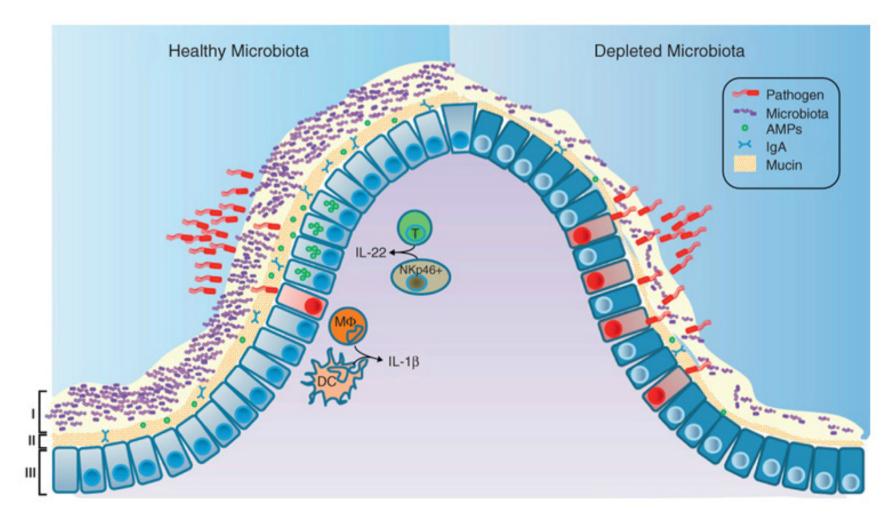
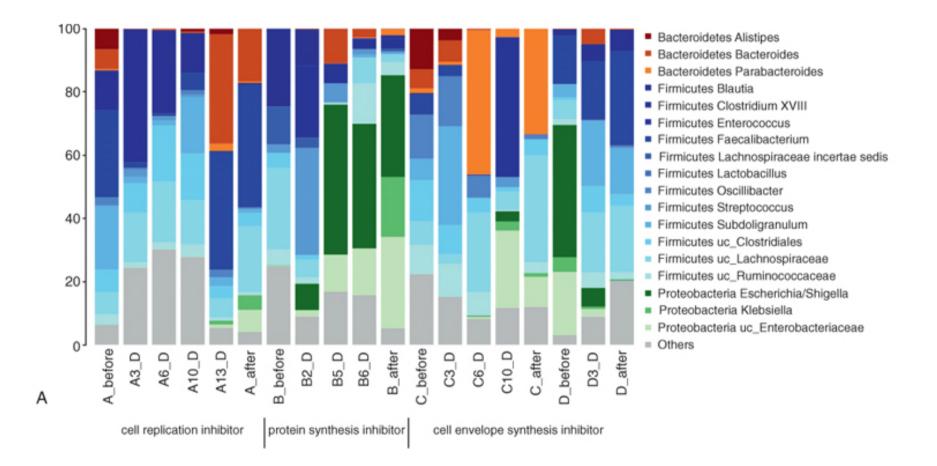
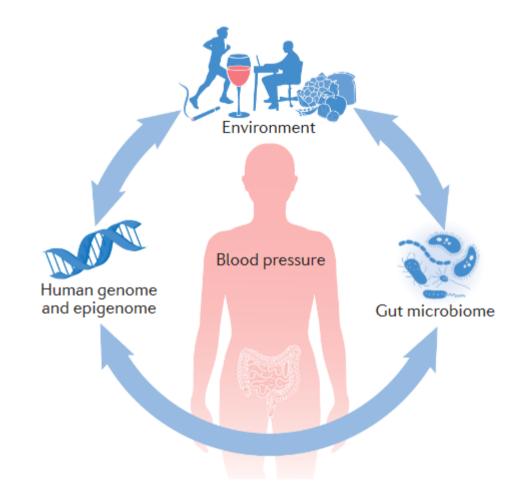

General aspects of bacteriology, bacterial structure and growth


Che-Hsin Lee, Ph.D. Department of Biological Sciences National Sun Yat-sen University

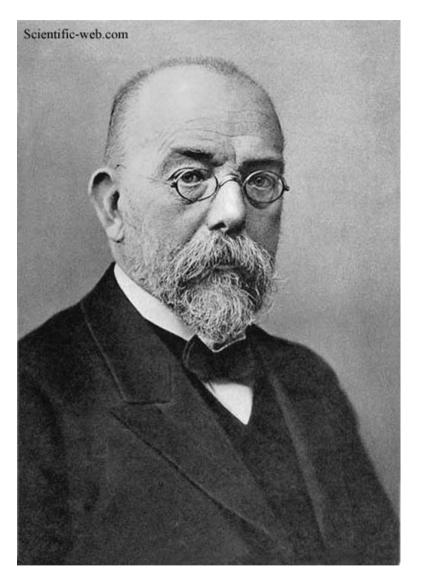
# **Human Microbiome Project**




- Providing metabolic function
- Stimulating immunity
- Preventing with unwanted pathogens


# Intestinal microbiota protection against enteric infections




#### Effect of antibiotics on the gut microbiota



#### Gut microbiota regulates blood pressure



Nature Reviews Cardiology



#### **Robert Koch**

Infectious diseases are caused by microorganisms, each one responsible for a particular disease

Disease caused by a community of organisms rather than a single species of bacteria.

# **Probiotics and prebiotics**

Probiotics are commonly gram-positive bacteria (e.g. *Bifidobacterium, Lactobacillus*) and yeasts (e.g. *Saccharomyces*).

Yogurt and Kefir.

Although probiotics are safe dietary supplement, not all probiotics are effective and for all people.

Prebiotics: the use of metabolic supplements promote a healthy microbiota (e.g. fiber, fructo-Oligosaccharide)

Symbiotics: Probiotics + prebiotics

# **Sterilization**

#### Total destruction of all microbes

| Method                  | Concentration or Level                            |  |  |
|-------------------------|---------------------------------------------------|--|--|
| Physical Sterilants     |                                                   |  |  |
| Steam under pressure    | 121° C or 132° C for various time intervals       |  |  |
| Filtration              | 0.22- to 0.45-µm pore size; HEPA filters          |  |  |
| Ultraviolet radiation   | Variable exposure to 254-nm wavelength            |  |  |
| Ionizing radiation      | Variable exposure to microwave or gamma radiation |  |  |
| Gas Vapor Sterilants    |                                                   |  |  |
| Ethylene oxide          | 450-1200 mg/L at 29° C to 65° C for 2-5 hr        |  |  |
| Hydrogen peroxide vapor | 30% at 55° C to 60° C                             |  |  |
| Plasma gas              | Highly ionized hydrogen peroxide gas              |  |  |
| Chemical Sterilants     |                                                   |  |  |
| Peracetic acid          | 0.2%                                              |  |  |
| Glutaraldehyde          | 2%                                                |  |  |

# Disinfection

Destroy most microbial form

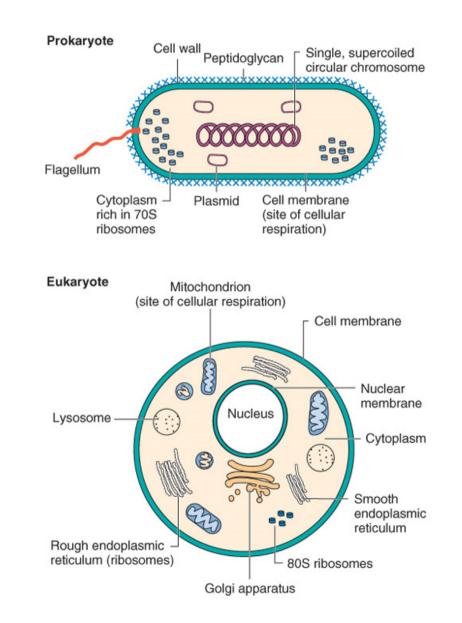
Methods of Disinfection

| Method                        | Concentration (Level of Activity)             |
|-------------------------------|-----------------------------------------------|
| Heat                          |                                               |
| Moist heat                    | $75^\circC$ to $100^\circC$ for 30 min (high) |
| Liquid                        |                                               |
| Glutaraldehyde                | 2%-3.2% (high)                                |
| Hydrogen peroxide             | 3%-25% (high)                                 |
| Chlorine compounds            | 100-1000 ppm of free chlorine (high)          |
| Alcohol (ethyl, isopropyl)    | 70%-95% (intermediate)                        |
| Phenolic compounds            | 0.4%-5.0% (intermediate/low)                  |
| lodophor compounds            | 30-50 ppm of free iodine/L (intermediate)     |
| Quaternary ammonium compounds | 0.4%-1.6% (low)                               |

# **Antiseptic agents**

Reduce the number of microbes

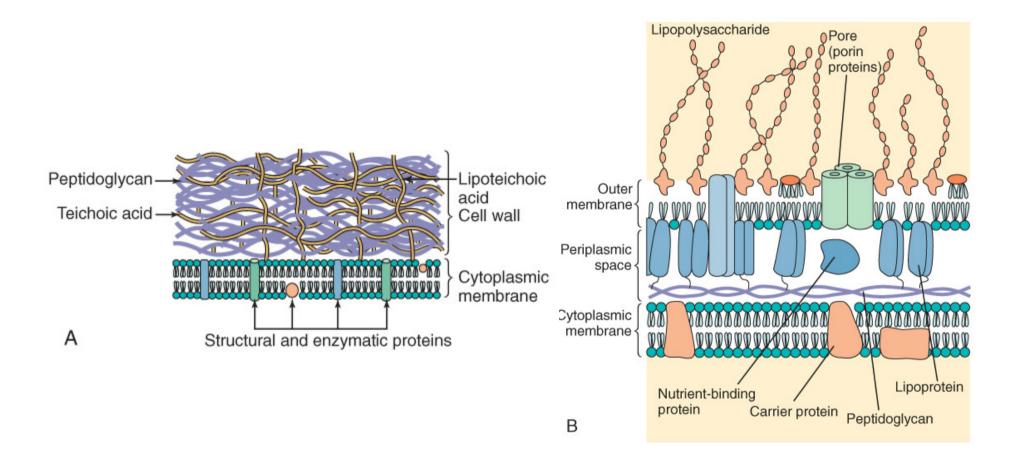
#### Antiseptic Agents


| Antiseptic Agent           | Concentration                                   |
|----------------------------|-------------------------------------------------|
| Alcohol (ethyl, isopropyl) | 70%-90%                                         |
| lodophors                  | 1-2 mg of free iodine/L; 1%-2% available iodine |
| Chlorhexidine              | 0.5%-4.0%                                       |
| Parachlorometaxylenol      | 0.50%-3.75%                                     |
| Triclosan                  | 0.3%-2.0%                                       |

### **Properties of disinfectants and antiseptic agents**

#### Germicidal Properties of Disinfectants and Antiseptic Agents

| Agents                        | Bacteria | Mycobacteria | Bacterial Spores | Fungi | Viruses |
|-------------------------------|----------|--------------|------------------|-------|---------|
| Disinfectants                 |          |              | ·                |       |         |
| Alcohol                       | +        | +            | _                | +     | +/-     |
| Hydrogen peroxide             | +        | +            | +/-              | +     | +       |
| Phenolics                     | +        | +            | -                | +     | +/-     |
| Chlorine                      | +        | +            | +/-              | +     | +       |
| Iodophors                     | +        | +/-          | _                | +     | +       |
| Glutaraldehyde                | +        | +            | +                | +     | +       |
| Quaternary ammonium compounds | +/-      | -            | -                | +/-   | +/-     |
| Antiseptic Agents             |          |              |                  |       |         |
| Alcohol                       | +        | +            | _                | +     | +       |
| Iodophors                     | +        | +            | -                | +     | +       |
| Chlorhexidine                 | +        | +            | _                | +     | +       |
| Parachlorometaxylenol         | +/-      | +/-          | _                | +     | +/-     |
| Triclosan                     | +        | +/-          | _                | +/-   | +       |


### **Differences between eukaryotes and prokaryotes**



## **Differences between eukaryotes and prokaryotes**

| Characteristic         | Eukaryote                                  | Prokaryote                                                               |  |
|------------------------|--------------------------------------------|--------------------------------------------------------------------------|--|
| Major groups           | Algae, fungi, protozoa,<br>plants, animals | Bacteria                                                                 |  |
| Size (approximate)     | >5 µm                                      | 0.5-3.0 μm                                                               |  |
| Nuclear Structures     |                                            |                                                                          |  |
| Nucleus                | Classic membrane                           | No nuclear membrane                                                      |  |
| Chromosomes            | Strands of DNA diploid genome              | Single, circular DNA haploid genome                                      |  |
| Cytoplasmic Structures |                                            |                                                                          |  |
| Mitochondria           | Present                                    | Absent                                                                   |  |
| Golgi bodies           | Present                                    | Absent                                                                   |  |
| Endoplasmic reticulum  | Present                                    | Absent                                                                   |  |
| Ribosomes              | 80S (60S + 40S)                            | 70S (50S + 30S)                                                          |  |
| Cytoplasmic membrane   | Contains sterols                           | Does not contain sterols (except<br>mycoplasma)                          |  |
| Cell wall              | Present for fungi;<br>otherwise absent     | Is a complex structure containing protein,<br>lipids, and peptidoglycans |  |
| Reproduction           | Sexual and asexual                         | Asexual (binary fission)                                                 |  |
| Movement               | Complex flagellum, if<br>present           | Simple flagellum, if present                                             |  |
| Respiration            | Via mitochondria                           | Via cytoplasmic membrane                                                 |  |

### **Bacterial cell walls**



## Gram stain

#### Gram-Positive

Staphylococcus aureus

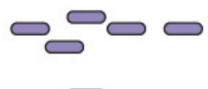
Step 1 Crystal violet



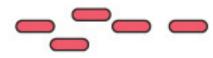
Step 2 Gram iodine



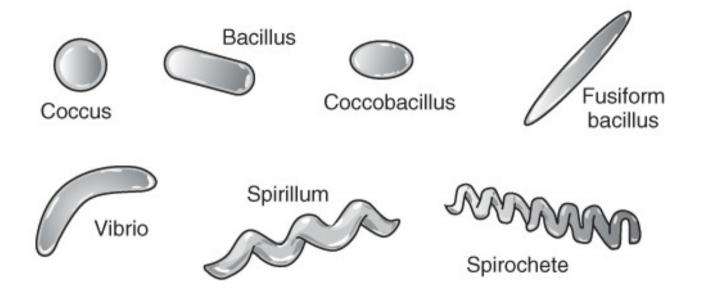
Step 3 Decolorizer (alcohol or acetone)



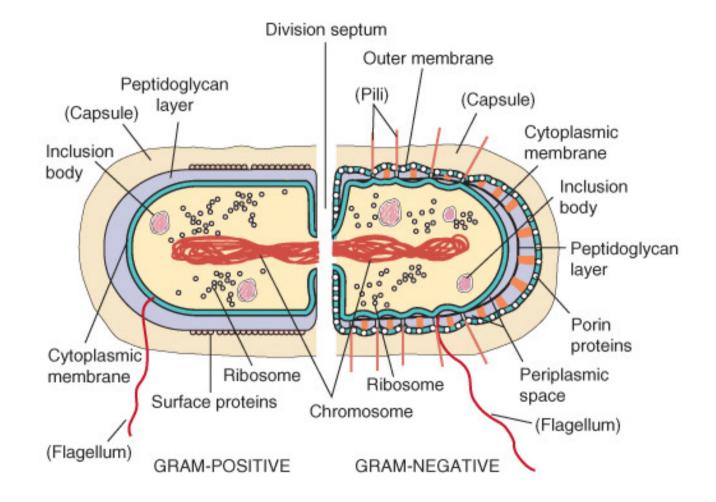

Step 4 Safranin red




#### **Gram-Negative**


Escherichia coli





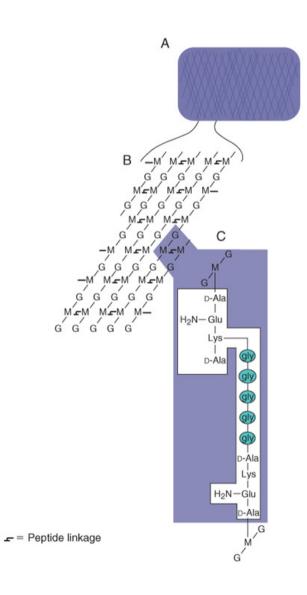



# **Bacterial morphology**

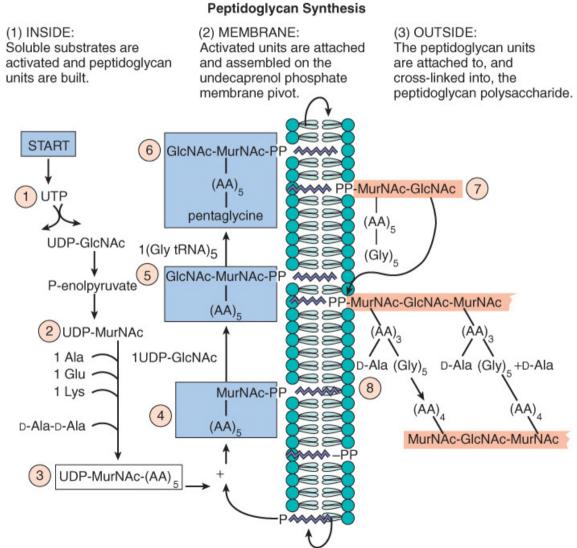


### Gram-positive and gram-negative bacteria

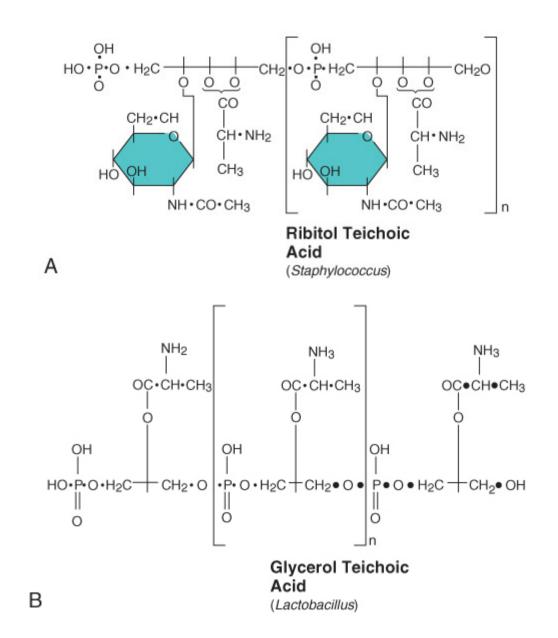



#### Functions of the bacterial envelope

| Function                            | Component                                                       |  |  |  |
|-------------------------------------|-----------------------------------------------------------------|--|--|--|
| Structure                           |                                                                 |  |  |  |
| Rigidity                            | All                                                             |  |  |  |
| Packaging of internal contents      | All                                                             |  |  |  |
| Bacterial Functions                 |                                                                 |  |  |  |
| Permeability barrier                | Outer membrane or plasma membrane                               |  |  |  |
| Metabolite uptake                   | Membranes and periplasmic transport proteins, porins, permeases |  |  |  |
| Energy production                   | Plasma membrane                                                 |  |  |  |
| Motility                            | Flagella                                                        |  |  |  |
| Mating                              | Pili                                                            |  |  |  |
| Host Interaction                    |                                                                 |  |  |  |
| Adhesion to host cells              | Pili, proteins, teichoic acid                                   |  |  |  |
| Immune recognition by host          | All outer structures and peptidoglycan                          |  |  |  |
| Escape from host immune protections |                                                                 |  |  |  |
| Antibody                            | Protein A                                                       |  |  |  |
| Phagocytosis                        | Capsule, M protein                                              |  |  |  |
| Complement                          | Gram-positive peptidoglycan                                     |  |  |  |
| Medical Relevance                   |                                                                 |  |  |  |
| Antibiotic targets                  | Peptidoglycan synthesis, outer membrane                         |  |  |  |
| Antibiotic resistance               | Outer membrane barrier                                          |  |  |  |

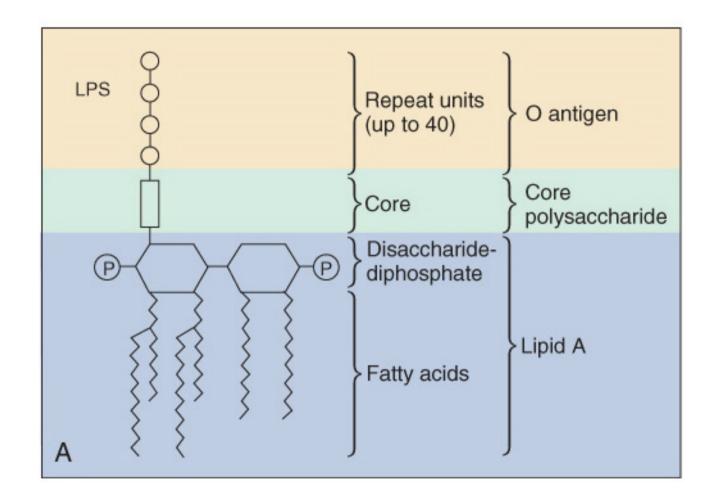

#### Membrane characteristics of Gram-positive and Gramnegative bacteria

| Characteristic                       | Gram-Positive     | Gram-Negative     |
|--------------------------------------|-------------------|-------------------|
| Outer membrane                       | -                 | +                 |
| Cell wall                            | Thick             | Thin              |
| Lipopolysaccharide                   | -                 | +                 |
| Endotoxin                            | -                 | +                 |
| Teichoic acid                        | Often present     | -                 |
| Sporulation                          | Some strains      | -                 |
| Capsule                              | Sometimes present | Sometimes present |
| Lysozyme                             | Sensitive         | Resistant         |
| Antibacterial activity of penicillin | More susceptible  | More resistant    |
| Exotoxin production                  | Some strains      | Some strains      |

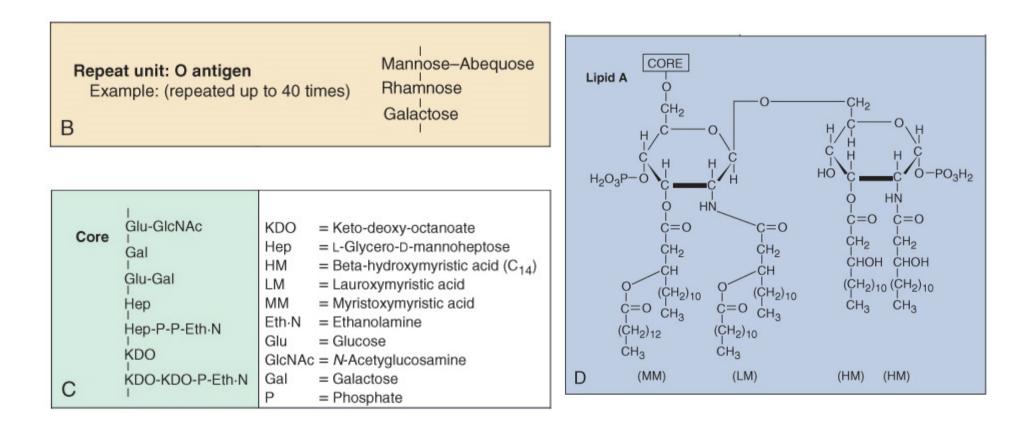

### Structure of the peptidoglycan



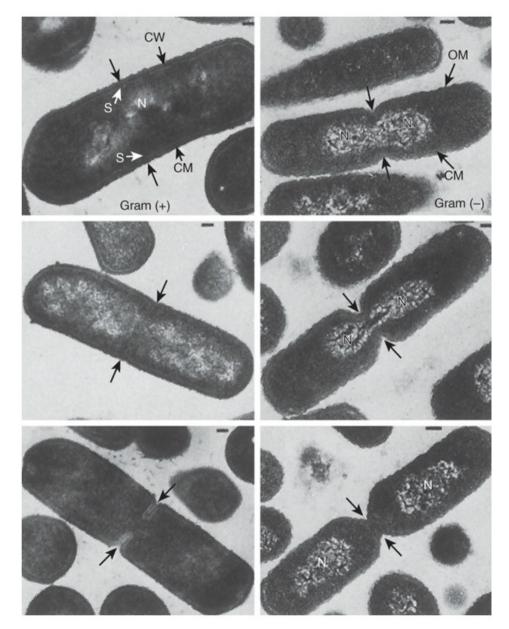
#### **Peptidoglycan synthesis**



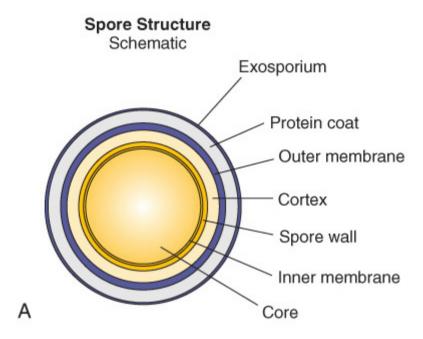

### **Teichoic acid**

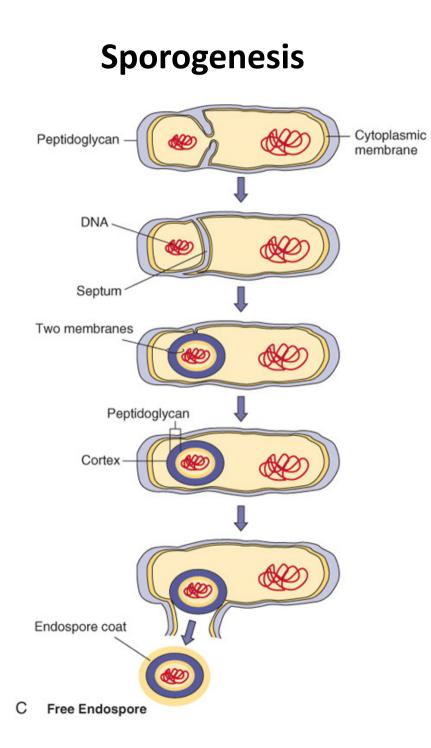



22


# Lipopolysaccharide (LPS)




# Lipopolysaccharide (LPS)




# **Cell division**

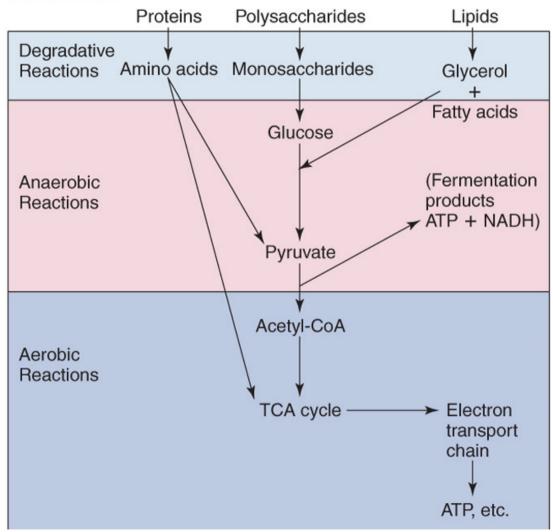


### Structure of the spore





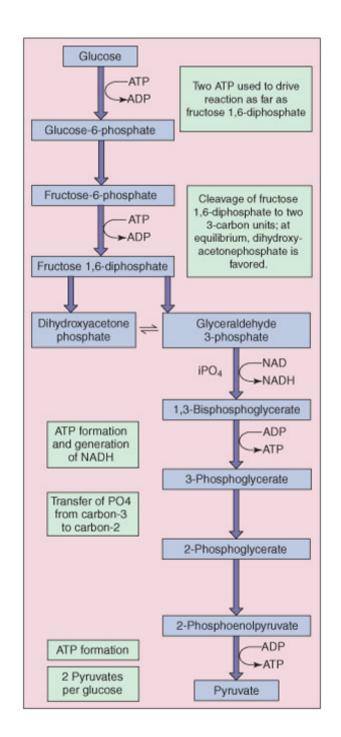
# Bacterial metabolism, growth, and genetics

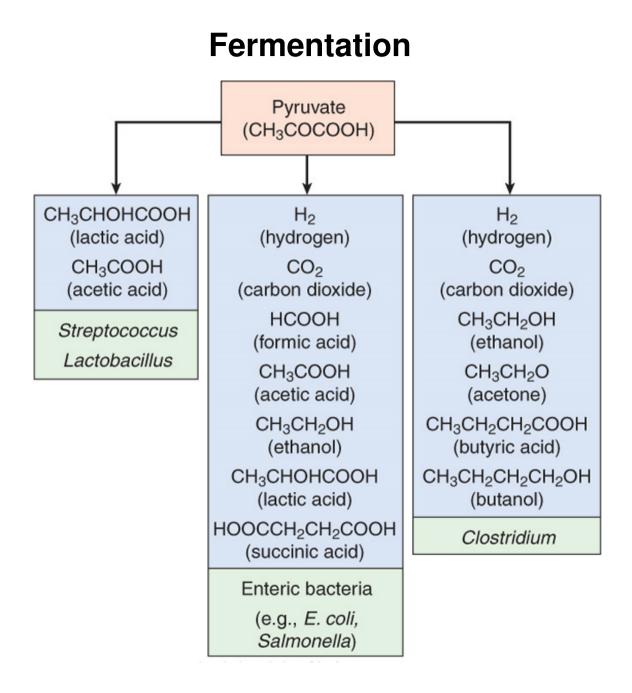

# Metabolism and the conversion of energy

- Biosynthesis
- DNA
- Transcriptional control
- Mutation, repair, and recombination

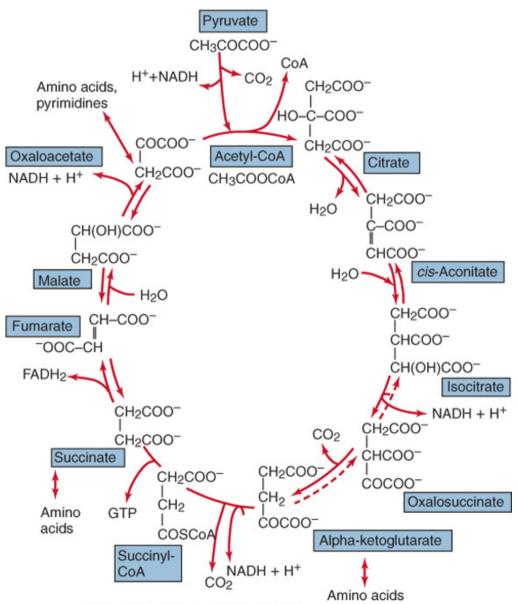
- Obligate anaerobes
- Obligate aerobes
- Facultative anaerobes

#### Catabolism


#### CATABOLISM




Anabolism Intermediary metabolism


# Glycolytic pathway (Embden-Meyerhof-Parnas pathway)

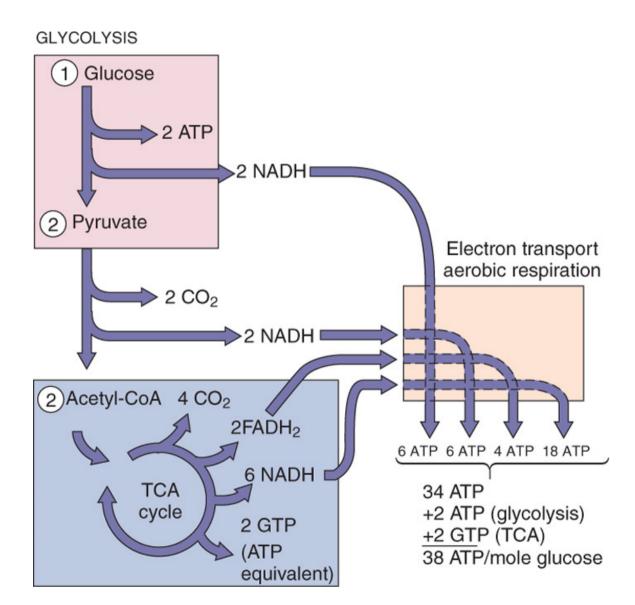
Nicotinamide adenine dinuceotide (NADH)



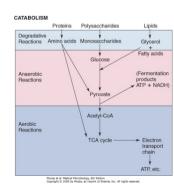


#### Tricarboxylic acid (TCA) cycle



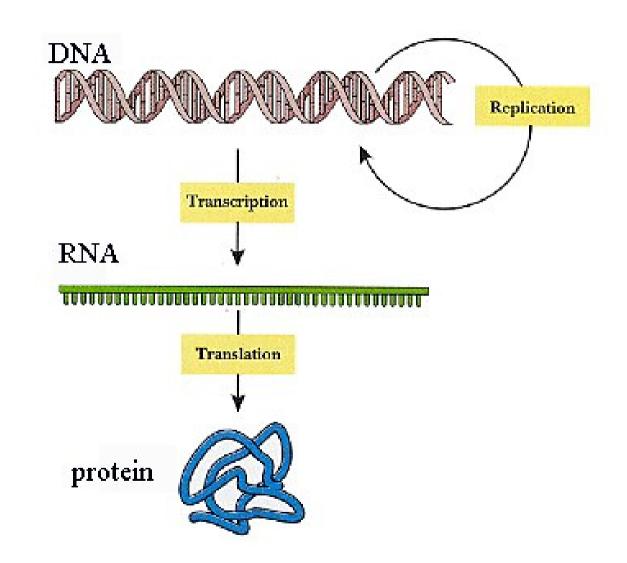

Murray et al: Medical Microbiology, 6th Edition. Copyright © 2009 by Mosby, an imprint of Elsevier, Inc. All rights reserved.

#### Fermentation an aerobic metabolism

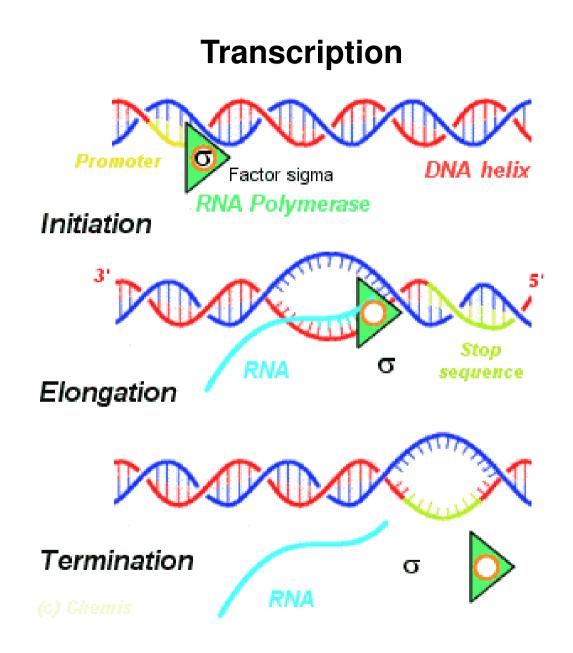

Fermentation: 2 ATP molecules per glucose

Aerobic metabolism with electron transport: 38 ATP per glucose

#### Aerobic glucose metabolism




- 1. It is the most efficient mechanism for the generation of ATP.
- 2. It serves as the final common pathway for the complete oxidation of amino acids, fatty acids, and carbohydrates.
- 3. It supplies key intermediates for the ultimate synthesis of amino acids, lipids, purines, and pyrimidines.

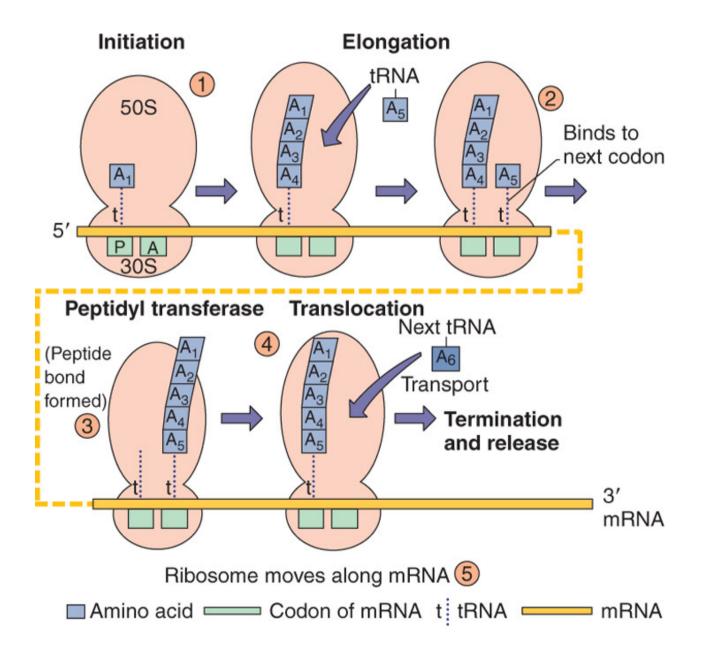


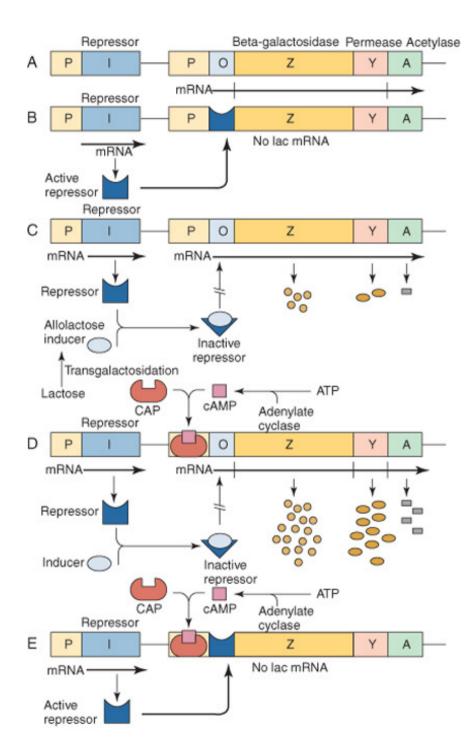

The last two functions make the TCA cycle a so-called amphibolic cycle.

## **Genes and expression**



instruct.westvalley.edu/svenssonCellsandGenes/10MolecularBiology.html





instruct.westvalley.edu/svenssonCellsandGenes/10MolecularBiology.html

## **Genetic code**

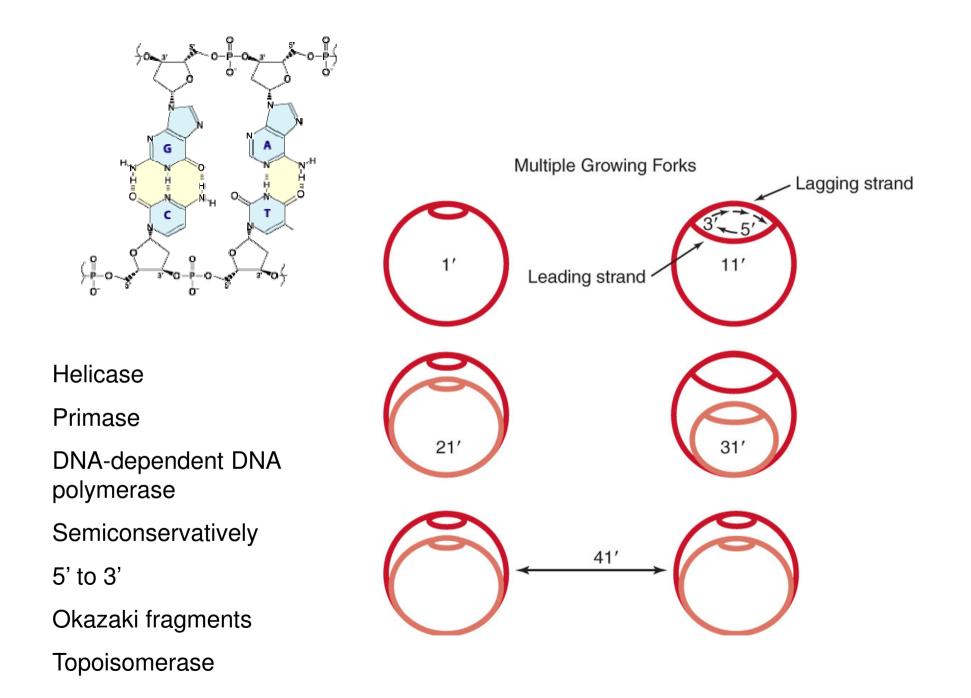
| UUU     | UCU     | UAU      | UGU      |
|---------|---------|----------|----------|
| UUC Phe | UCC Ser | UAC Tyr  | UGC Cys  |
| UUA     | UCA     | UAA Stop | UGA Stop |
| UUG Leu | UCG     | UAG Stop | UGG Trp  |
| CUU     | CCU     | CAU      | CGU      |
| CUC Leu | CCC Pro | CAC His  | CGC Arg  |
| CUA     | CCA     | CAA      | CGA      |
| CUG     | CCG     | CAG Gln  | CGG      |
| AUU     | ACU     | AAU      | AGU      |
| AUC lle | ACC Thr | AAC Asn  | AGC Ser  |
| AUA     | ACA     | AAA      | AGA      |
| AUG Met | ACG     | AAG Lys  | AGG Arg  |
| GUU     | GCU     | GAU      | GGU      |
| GUC Val | GCC Ala | GAC Asp  | GGC Gly  |
| GUA     | GCA     | GAA      | GGA      |
| GUG     | GCG     | GAG Glu  | GGG      |

## **Bacterial protein synthesis**

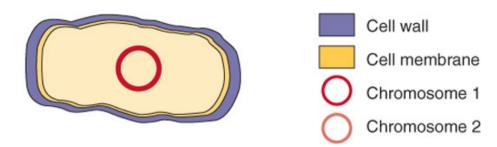


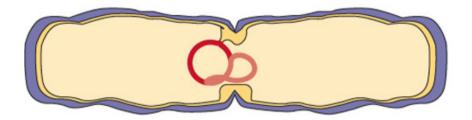


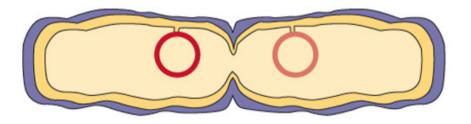
P: promoter

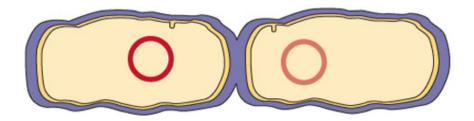

I: Repressor

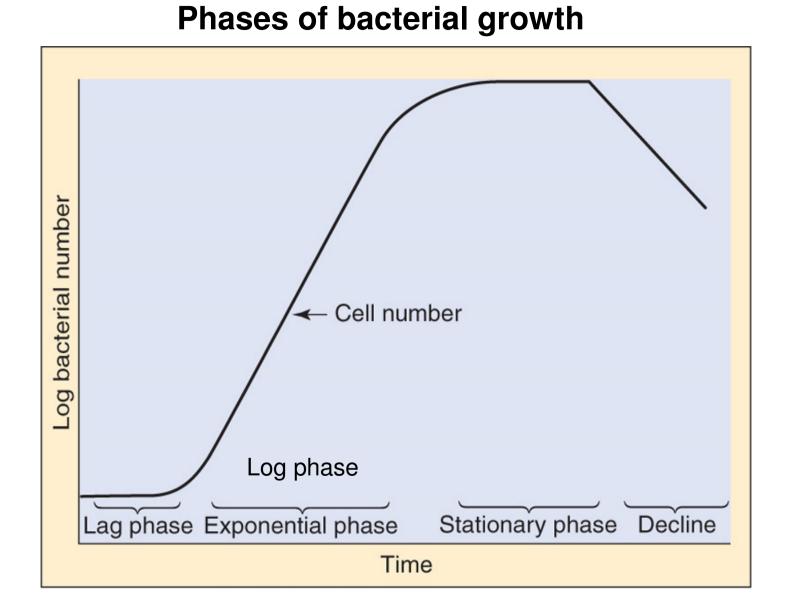
O: Operator


Z:β-galactosidase


Y: permease


A: acetylase





## **Bacterial cell division**



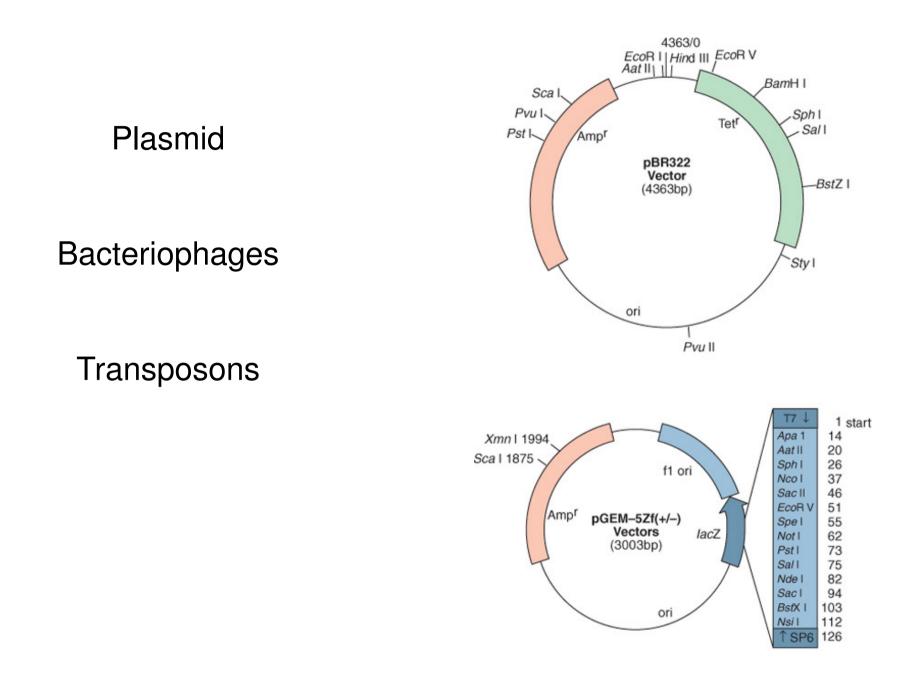




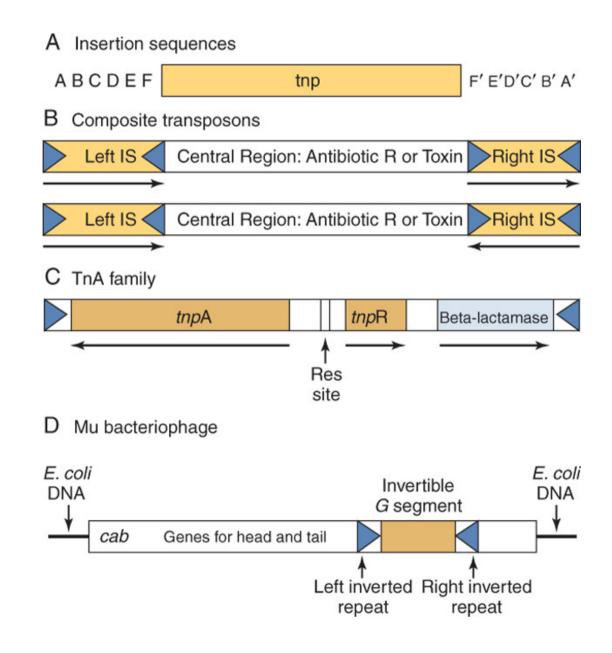




Transition: one purine is replaced by another purine
Transversion: one purine is replaced by one pyrimidine
Silent mutation: amino acid is not changed
Missense mutation: different amino acid
Conservative mutation: the new amino acid has similar properties
Nonsense mutation: amino acid → stop codon
Frameshift mutation: change in the reading frame


Null mutations: completely destroy gene function

Purine: Adenine (A) Guanine (G)

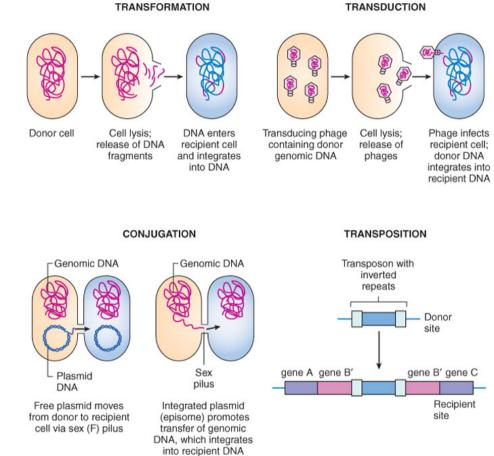

Pyrimidine: Cytosine (C) Thymine (T) Uracil (U)

Repair mechanisms of DNA

Direct DNA repair Excision repair Recombinational repair SOS response (Error-prone repair)

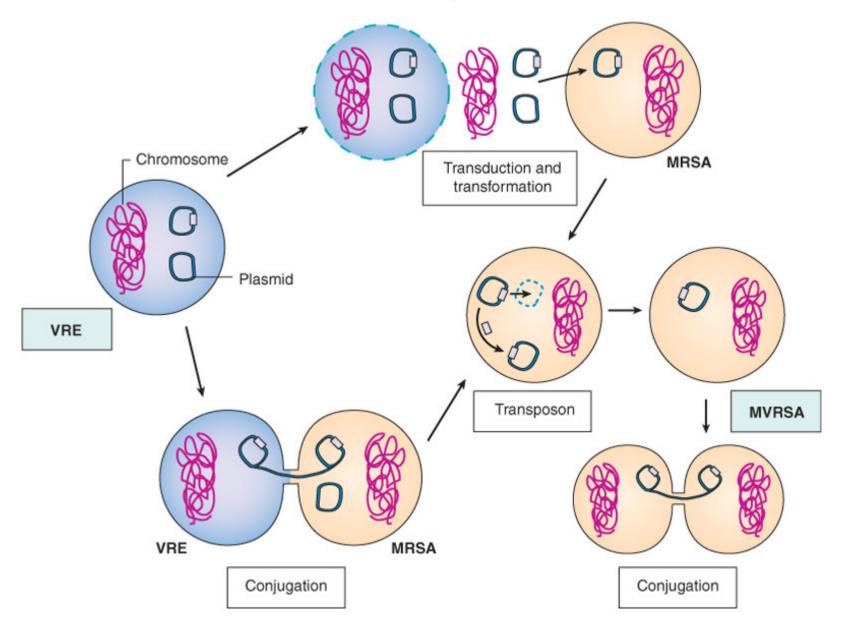


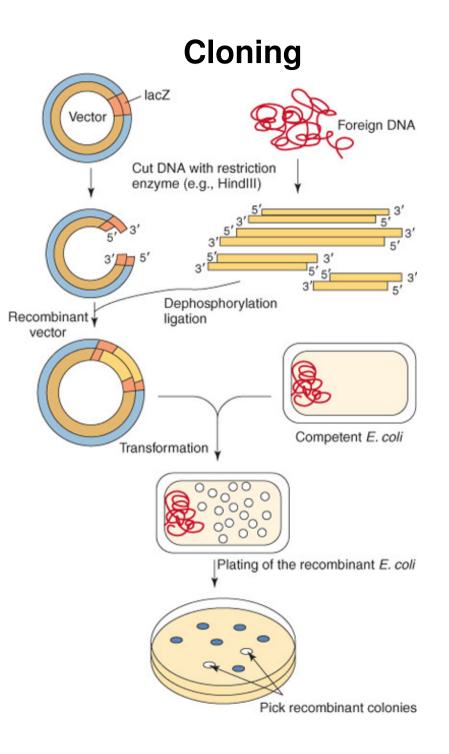
## Transposons




## Conjugation

Transformation


Transduction


Transposon



Murray et al: Medical Microbiology, 6th Edition. Copyright © 2009 by Mosby, an imprint of Elsevier, Inc. All rights reserved.

# Generation of drug-resistant *Staphylococcus aureus* by multiple genetic manipulations





# Viral classification, structure, and replication

#### **Definition and Properties of a Virus**

Viruses are filterable agents.

Viruses are obligate intracellular parasites.

Viruses cannot make energy or proteins independently of a host cell.

Viral genomes may be RNA or DNA but not both.

Viruses have a naked capsid or an envelope morphology.

Viral components are assembled and do not replicate by "division."

#### **Consequences of Viral Properties**

Viruses are not living.

Viruses must be infectious to endure in nature.

Viruses must be able to use host cell processes to produce their components (viral messenger RNA, protein, and identical copies of the genome).

Viruses must encode any required processes not provided by the cell.

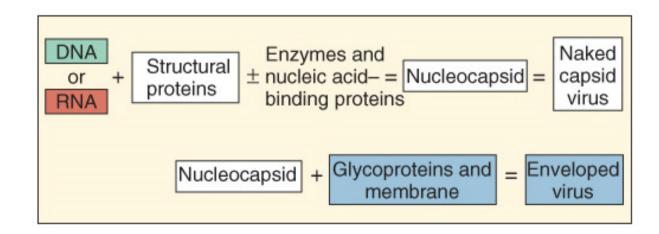
Viral components must self-assemble.

#### Means of Classification and Naming of Viruses

Structure: size, morphology, and nucleic acid (e.g., picornavirus [small RNA], togavirus)

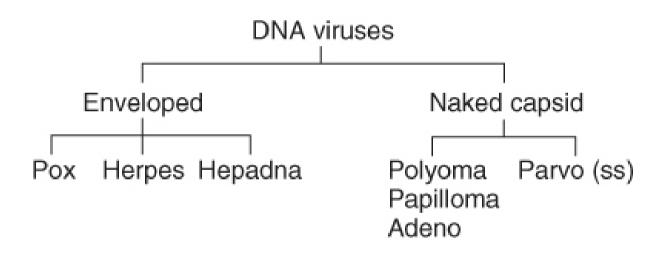
Biochemical characteristics: structure and mode of replication

\* This is the current means of taxonomic classification of viruses.

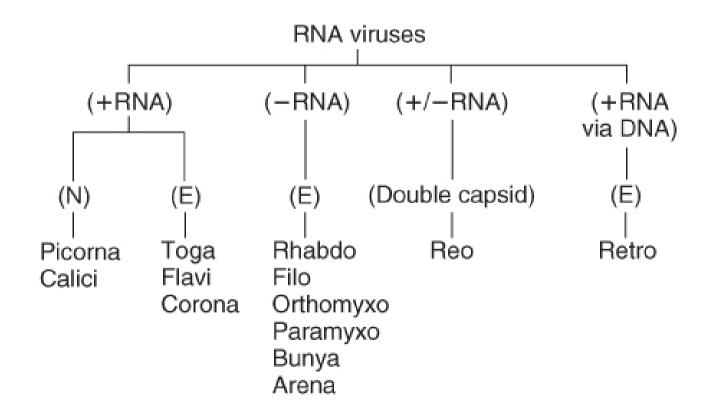

Disease: encephalitis and hepatitis viruses, for example

Means of transmission: arbovirus spread by insects, for example

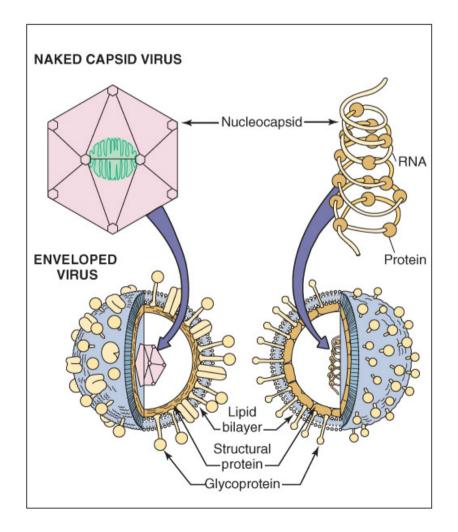
Host cell (host range): animal (human, mouse, bird), plant, bacteria


Tissue or organ (tropism): adenovirus and enterovirus, for example

### Components of the basic virion




| Some common causes of disease in humans |             |                  |                                                                                |  |
|-----------------------------------------|-------------|------------------|--------------------------------------------------------------------------------|--|
|                                         | DNA viruses | Adenoviruses     | Human adenoviruses (e.g., types 3, 4, and 7)                                   |  |
|                                         |             | Herpesviruses    | Herpes simplex, varicella zoster, Epstein–Barr<br>virus, cytomegalovirus, HHV8 |  |
|                                         |             | Poxviruses       | Variola, vaccinia virus                                                        |  |
|                                         |             | Parvoviruses     | Human parvovirus                                                               |  |
|                                         |             | Papovaviruses    | Papilloma virus                                                                |  |
|                                         |             | Hepadnaviruses   | Hepatitis B virus                                                              |  |
| Viruses                                 |             | Orthomyxoviruses | Influenza virus                                                                |  |
|                                         |             | Paramyxoviruses  | Mumps, measles, respiratory syncytial virus                                    |  |
|                                         |             | Coronaviruses    | Cold viruses, SARS                                                             |  |
|                                         |             | Picornaviruses   | Polio, coxsackie, hepatitis A, rhinovirus                                      |  |
|                                         |             | Reoviruses       | Rotavirus, reovirus                                                            |  |
|                                         | RNA viruses | Togaviruses      | Rubella, arthropod-borne encephalitis                                          |  |
|                                         |             | Flaviviruses     | Arthropod-borne viruses,<br>(yellow fever, dengue fever)                       |  |
|                                         |             | Arenaviruses     | Lymphocytic choriomeningitis, Lassa fever                                      |  |
|                                         |             | Rhabdoviruses    | Rabies                                                                         |  |
|                                         |             | Retroviruses     | Human T-cell leukemia virus, HIV                                               |  |


The DNA viruses and their morphology



# The RNA viruses, their genome structure, and their morphology



### Naked capsid virus and Enveloped virus



## Virion structure: Naked capsid

#### Naked Capsid

#### Component

Protein

#### Consequences

| Properties                               | Can be spread easily (on fomites, from hand to hand, by dust, by small droplets) |
|------------------------------------------|----------------------------------------------------------------------------------|
| * Exceptions exist.                      |                                                                                  |
| Is environmentally stable to the followi | Can dry out and retain infectivity                                               |
| Temperature                              | Can survive the adverse conditions of the gut                                    |
| Acid                                     | Can be resistant to detergents and poor sewage treatment                         |
| Proteases                                | Antibody may be sufficient for immunoprotection                                  |
| Detergents                               |                                                                                  |
| Drying                                   |                                                                                  |

Is released from cell by lysis

## Virion structure: Envelope

#### Envelope

#### Components

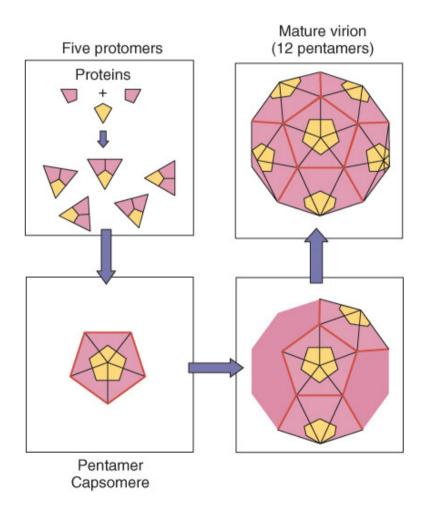
| Membrane      |                                                                                  |  |
|---------------|----------------------------------------------------------------------------------|--|
|               | Consequences                                                                     |  |
| Lipids        | Must stay wet                                                                    |  |
| Proteins      | Cannot survive the gastrointestinal tract                                        |  |
| Glycoproteins | Spreads in large droplets, secretions, organ transplants, and blood transfusions |  |

#### **Properties**

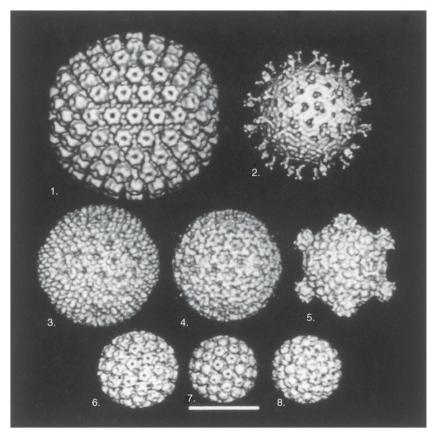
\* Exceptions exist.

Is environmentally labile—disrupted by the following: Acid

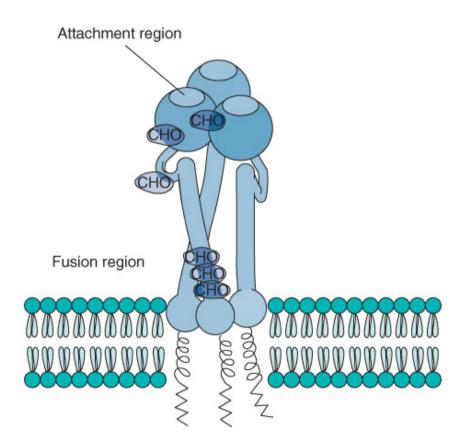
Detergents


Drying

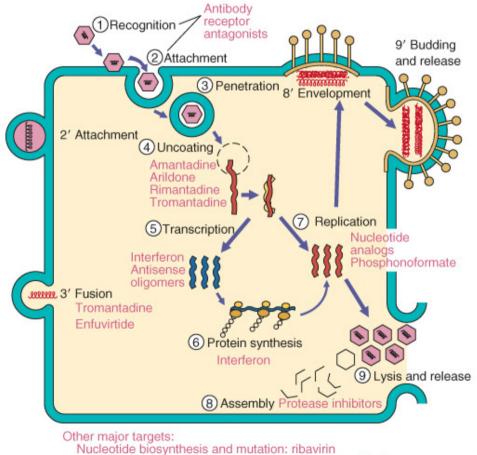
Heat


Modifies cell membrane during replication

Is released by budding and cell lysis


### Icosahedral capsid of a picornavirus




Cryoelectron microscopy and computergenerated 3D image reconstructions of



### The hemagglutinin glycoprotein trimer of influenza A virus



### Viral replication



Thymidine kinase (drug activation): acyclovir, penciclovir Neuraminidase: zanamivir, oseltamivir

### Steps in viral replication

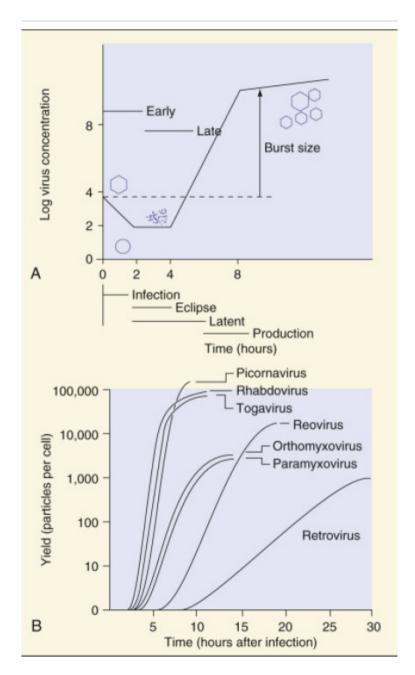
#### **Steps in Viral Replication**

1. Recognition of the target cell

2. Attachment

- 3. Penetration
- 4. Uncoating

6. Assembly of virus


7. Budding of enveloped viruses

8. Release of virus

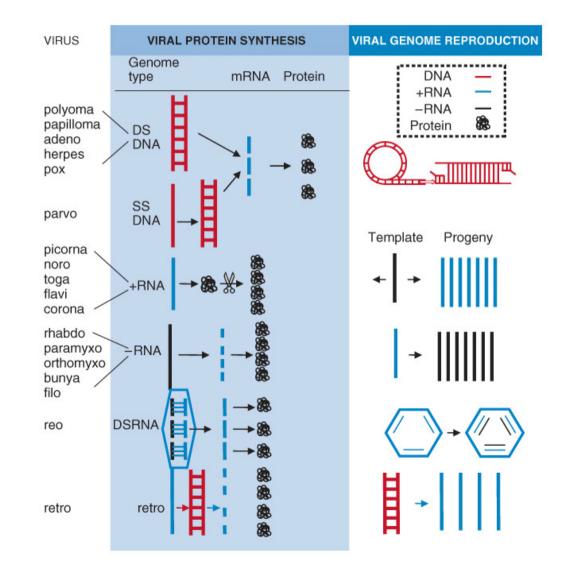
5. Macromolecular synthesis

a. Early messenger RNA (mRNA) and nonstructural protein synthesis: genes for enzymes and nucleic acid–binding proteins

- b. Replication of genome
- c. Late mRNA and structural protein synthesis
- d. Posttranslational modification of protein



Single-cycle growth curve for a virus


## Viral attachment proteins

| Virus Family     | Virus                        | Viral Attachment Protein |
|------------------|------------------------------|--------------------------|
| Picornaviridae   | Rhinovirus                   | VP1-VP2-VP3 complex      |
| Adenoviridae     | Adenovirus                   | Fiber protein            |
| Reoviridae       | Reovirus                     | σ-1                      |
|                  | Rotavirus                    | VP7                      |
| Togaviridae      | Semliki Forest virus         | E1-E2-E3 complex gp      |
| Rhabdoviridae    | Rabies virus                 | G protein gp             |
| Orthomyxoviridae | Influenza A virus            | HA gp                    |
| Paramyxoviridae  | Measles virus                | HA gp                    |
| Herpesviridae    | Epstein-Barr virus           | gp350 and gp220          |
| Retroviridae     | Murine leukemia virus        | gp70                     |
|                  | Human immunodeficiency virus | gp120                    |

## Viral receptors

| Virus                           | Target Cell             | Receptor                                       |
|---------------------------------|-------------------------|------------------------------------------------|
| Epstein-Barr virus              | B cell                  | C3d complement receptor CR2 (CD21)             |
| Human immunodeficiency<br>virus | Helper T cell           | CD4 molecule and chemokine coreceptor          |
| Rhinovirus                      | Epithelial cells        | ICAM-1 (immunoglobulin superfamily protein)    |
| Poliovirus                      | Epithelial cells        | Immunoglobulin superfamily protein             |
| Herpes simplex virus            | Many cells              | Herpesvirus entry mediator (HVEM),<br>nectin-1 |
| Rabies virus                    | Neuron                  | Acetylcholine receptor, NCAM                   |
| Influenza A virus               | Epithelial cells        | Sialic acid                                    |
| B19 parvovirus                  | Erythroid<br>precursors | Erythrocyte P antigen (globoside)              |

### Viral macromolecular synthesis steps



**Mechanisms of viral pathogenesis** 

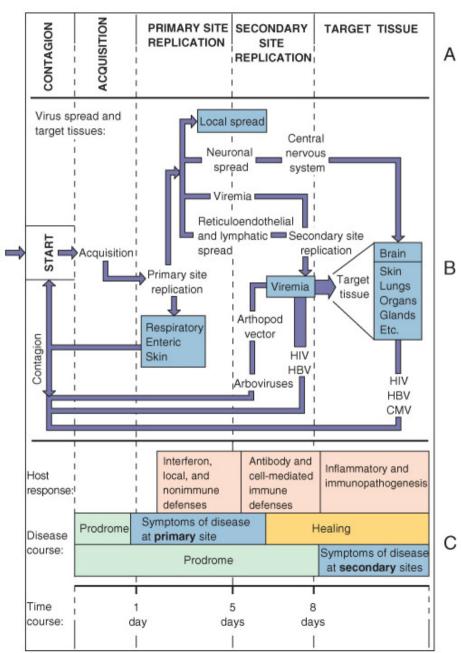
### Viral disease

#### Severity of Disease

Nature of the Disease

Target tissue

Portal of entry of virus


Access of virus to target tissue

Tissue tropism of virus

Permissiveness of cells for viral replication

Pathogenic activity (strain)

Cytopathic ability of virus Immune status (naïve or immunized) Competence of the immune system Prior immunity to the virus Immunopathology Virus inoculum size Length of time before resolution of infection General health of the person Nutrition Other diseases influencing immune status Genetic makeup of the person Age



### The stages of viral infection

### Progression of viral disease

- 1. Acquisition (entry into the body)
- 2. Initiation of infection at a primary site
- 3. Activation of innate protections

4. An **incubation period**, when the virus is amplified and may spread to a secondary site

- 5. Replication in the **target tissue**, which causes the characteristic disease signs
- 6. Host responses that limit and contribute (immunopathogenesis) to the disease
- 7. Virus production in a tissue that releases the virus to other people for **contagion**
- 8. Resolution or persistent infection/chronic disease

#### Determinants of viral pathogenesis I

Interaction of Virus with Target Tissue

Access of virus to target tissue

Stability of virus in the body Temperature and dryness

Acid and bile of the gastrointestinal tract

Ability to cross skin or mucosal epithelial cells (e.g., cross the gastrointestinal tract into the bloodstream)

Ability to establish viremia

Ability to spread through the reticuloendothelial system

Target tissue

Specificity of viral attachment proteins

Tissue-specific expression of receptors

Determinants of viral pathogenesis II

Cytopathologic Activity of the Virus

Efficiency of viral replication in the cell Optimum temperature for replication

Permissiveness of cell for replication

Cytotoxic viral proteins

Inhibition of cell's macromolecular synthesis

Accumulation of viral proteins and structures (inclusion bodies)

Altered cell metabolism (e.g., cell immortalization)

#### Determinants of viral pathogenesis III

#### Host Protective Responses

Antigen-nonspecific antiviral responses Interferon and cytokines

Natural killer cells and macrophages

Antigen-specific immune responses T-cell responses

Antibody responses

Viral mechanisms of escape of immune responses

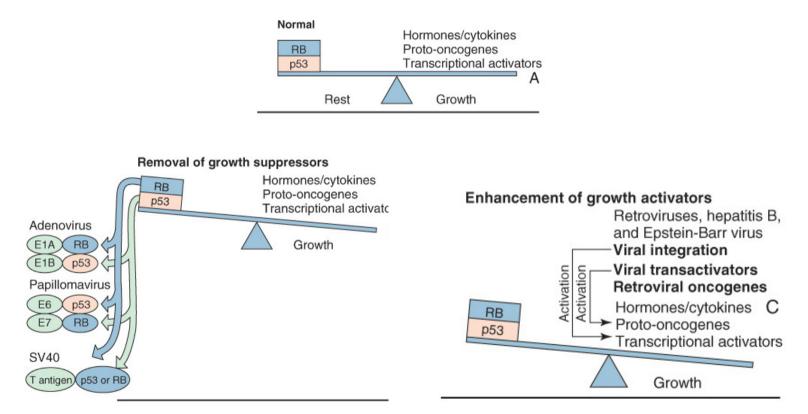
Immunopathology

Interferon: flulike systemic symptoms

T-cell responses: cell killing, inflammation

Antibody: complement, antibody-dependent cellular cytotoxicity, immune complexes

Types of viral infections at cellular level


| Туре         | Virus Production | Fate of Cell    |
|--------------|------------------|-----------------|
| Abortive     | _                | No effect       |
| Cytolytic    | +                | Death           |
| Persistent   |                  |                 |
| Productive   | +                | Senescence      |
| Latent       | _                | No effect       |
| Transforming |                  |                 |
| DNA viruses  | _                | Immortalization |
| RNA viruses  | +                | Immortalization |

#### Mechanisms of viral cytonathogenesis I

| Mechanism                                  | Examples                                                                      |
|--------------------------------------------|-------------------------------------------------------------------------------|
| Inhibition of cellular protein synthesis   | Poliovirus, herpes simplex virus (HSV), togaviruses, poxviruses               |
| Inhibition and degradation of cellular DNA | Herpesviruses                                                                 |
| Alteration of cell membrane structure      | Enveloped viruses                                                             |
| Viral glycoprotein insertion               | All enveloped viruses                                                         |
| Syncytia formation                         | HSV, varicella-zoster virus, paramyxoviruses, human<br>immunodeficiency virus |
| Disruption of cytoskeleton                 | Nonenveloped viruses (accumulation), HSV                                      |
| Permeability                               | Togaviruses, herpesviruses                                                    |
| Toxicity of virion components              | Adenovirus fibers, reovirus NSP4 protein                                      |

#### Mechanisms of viral cytopathogenesis II

| Inclusion Bodies                       | Examples                                                 |
|----------------------------------------|----------------------------------------------------------|
| Negri bodies (intracytoplasmic)        | Rabies                                                   |
| Intranuclear basophilic (Owl's eye)    | Cytomegalovirus (enlarged cells), adenoviruses           |
| Cowdry type A (intranuclear)           | HSV, subacute sclerosing panencephalitis (measles) virus |
| Intracytoplasmic acidophilic           | Poxviruses                                               |
| Perinuclear cytoplasmic<br>acidophilic | Reoviruses                                               |



#### Mechanisms of viral transformation and immortalization

## Viral immunopathogenesis

| Immunopathogenesis                              | Immune Mediators                                             | Examples                                                                            |
|-------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------------------|
| Flulike symptoms                                | Interferon, cytokines                                        | Respiratory viruses, arboviruses<br>(viremia-inducing viruses)                      |
| Type IV<br>hypersensitivity and<br>inflammation | T cells, macrophages, and<br>polymorphonuclear<br>leukocytes | Enveloped viruses                                                                   |
| Immune complex<br>disease                       | Antibody, complement                                         | Hepatitis B virus, rubella                                                          |
| Hemorrhagic disease                             | T cell, antibody, complement                                 | Yellow fever, dengue, Lassa fever, Ebola viruses                                    |
| Postinfection cytolysis                         | T cells                                                      | Enveloped viruses (e.g., postmeasles encephalitis)                                  |
| Cytokine storm                                  | Antigen-presenting cells, T                                  | Enveloped and other viruses                                                         |
| Immunosuppression                               | T cells, macrophages,<br>dendritic cells                     | Human immunodeficiency virus,<br>cytomegalovirus, measles virus,<br>influenza virus |

### Viral infection

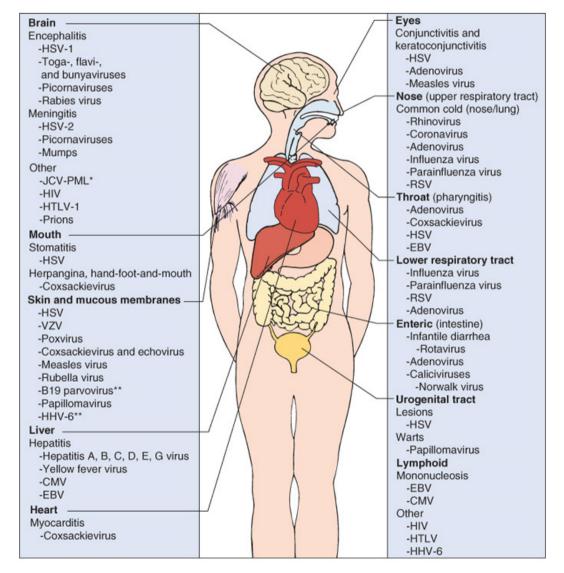
The relative **susceptibility** of a person and the **severity** of the disease depend on the following factors:

- 1. The mechanism of exposure and site of infection
- 2. The immune status, age, and general health of the person
- 3. The viral dose
- 4. The genetics of the virus and the host

### Incubation periods of common viral infections

| Disease                                  | Incubation Period (Days) <u>* (hl0000269)</u> |
|------------------------------------------|-----------------------------------------------|
| Influenza                                | 1-2                                           |
| Common cold                              | 1-3                                           |
| Herpes simplex                           | 2-8                                           |
| Bronchiolitis, croup                     | 3-5                                           |
| Acute respiratory disease (adenoviruses) | 5-7                                           |
| Dengue                                   | 5-8                                           |
| Enteroviruses                            | 6-12                                          |
| Poliomyelitis                            | 5-20                                          |
| Measles                                  | 9-12                                          |

### Incubation periods of common viral infections


| Smallpox                     | 12-14      |
|------------------------------|------------|
| Chickenpox                   | 13-17      |
| Mumps                        | 16-20      |
| Rubella                      | 17-20      |
| Mononucleosis                | 30-50      |
| Hepatitis A                  | 15-40      |
| Hepatitis B                  | 50-150     |
| Rabies                       | 30-100+    |
| Papilloma (warts)            | 50-150     |
| Human immunodeficiency virus | 1-15 years |
| AIDS                         | 1-10 years |

#### Viral transmission

| Respiratory<br>transmission       | Paramyxoviruses, influenza viruses, picornaviruses, rhinoviruses, varicella-<br>zoster virus, B19 virus                              |
|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| Fecal-oral<br>transmission        | Picornaviruses, rotavirus, reovirus, noroviruses, adenovirus                                                                         |
| Contact (lesions, fomites)        | HSV, rhinoviruses, poxviruses, adenovirus                                                                                            |
| Zoonoses<br>(animals, insects)    | Togaviruses (alpha), flaviviruses, bunyaviruses, orbiviruses, arenaviruses, hantaviruses, rabies virus, influenza A virus, orf (pox) |
| Transmission via<br>blood         | HIV, HTLV-1, HBV, HCV, hepatitis delta virus, cytomegalovirus                                                                        |
| Sexual contact                    | Blood-borne viruses, HSV, human papillomavirus, molluscum contagiosum,<br>HIV, HTLV-1, HBV, HCV                                      |
| Maternal-neonatal<br>transmission | Rubella virus, cytomegalovirus, B19 virus, echovirus, HSV, varicella-zoster<br>virus, HIV                                            |
| Genetic                           | Prions, retroviruses                                                                                                                 |

Role of viruses in disease

#### Major target tissues of viral disease



## Oral and respiratory diseases I

| Disease     | Etiologic Agent                   |
|-------------|-----------------------------------|
| Common Cold | Rhinovirus <u>* (hl0000119)</u>   |
|             | Coronavirus <u>* (hl0000119)</u>  |
|             | Influenza viruses                 |
|             | Parainfluenza viruses             |
|             | Respiratory syncytial virus (RSV) |
|             | Metapneumovirus                   |
|             | Adenovirus                        |
|             | Enteroviruses                     |

## Oral and respiratory diseases II

| Pharyngitis                                                            | Herpes simplex virus                                                                                        |
|------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
|                                                                        | Epstein-Barr virus                                                                                          |
|                                                                        | Adenovirus <u>* (hl0000119)</u>                                                                             |
|                                                                        | Coxsackievirus A <u>* (hl0000119)</u> (herpangina, hand-foot-<br>and-mouth disease) and other enteroviruses |
| Croup, Tonsillitis, Laryngitis, and<br>Bronchitis (Children < 2 Years) | Parainfluenza virus 1 <u>* (hl0000119)</u>                                                                  |
|                                                                        | Parainfluenza virus 2                                                                                       |
|                                                                        | Influenza virus                                                                                             |
|                                                                        | Adenovirus                                                                                                  |
|                                                                        | Epstein-Barr virus                                                                                          |

## Oral and respiratory diseases III

| Bronchiolitis | RSV <u>* (hl0000119)</u> (infants)                                              |
|---------------|---------------------------------------------------------------------------------|
|               | Metapneumovirus                                                                 |
|               | Parainfluenza virus 3 <u>* (hl0000119)</u> (infants and children)               |
|               | Parainfluenza viruses 1 and 2                                                   |
| Pneumonia     | RSV <u>* (hl0000119)</u> (infants)                                              |
|               | Metapneumovirus                                                                 |
|               | Parainfluenza virus <u>* (hl0000119)</u> (infants)                              |
|               | Influenza virus <u>* (hl0000119)</u>                                            |
|               | Adenovirus                                                                      |
|               | Varicella-zoster virus (primary infection of adults or immunocompromised hosts) |
|               | Cytomegalovirus (infection of immunocompromised host)                           |
|               | Measles                                                                         |

### Gastrointestinal viruses

Infants

Rotavirus A <u>\* (fn0010)</u>

\* Most common causal agents.

Adenovirus 40, 41

Coxsackievirus A24

Infants, Children, and Adults

Norwalk virus <u>\* (fn0010)</u>

Calicivirus

Astrovirus

Rotavirus A and B (outbreaks in China)

Reovirus

Viruses transmitted in blood

Hepatitis B, C, G, D

Human immunodeficiency virus

Human T-cell lymphotropic virus 1

Cytomegalovirus

**Epstein-Barr virus** 

West Nile encephalitis virus

### Sexually transmitted virus

Human papillomavirus 6, 11, 42

Human papillomavirus 16, 18, 31, 45, and others (high risk for human cervical carcinoma)

Herpes simplex virus (HSV-1 and HSV-2)

Cytomegalovirus

Hepatitis B, C, and D viruses

Human immunodeficiency virus

Human T-cell lymphotropic virus 1

Screening of the blood supply

Human immunodeficiency syndrome

Hepatitis B

Hepatitis C

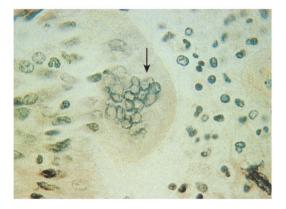
Human T-cell lymphotropic virus 1 and 2

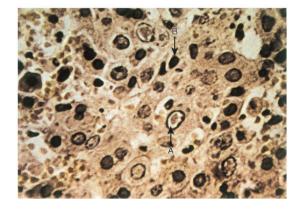
West Nile encephalitis virus \* (fn0025)

## Arboviruses and Zoonoses

| Virus                       | Family       | Reservoir/Vector             |
|-----------------------------|--------------|------------------------------|
| Eastern equine encephalitis | Togaviridae  | Birds/ Aedes mosquito        |
| Western equine encephalitis | Togaviridae  | Birds/ Culex mosquito        |
| West Nile encephalitis      | Flaviviridae | Birds/ Culex mosquito        |
| St. Louis encephalitis      | Flaviviridae | Birds/ Culex mosquito        |
| Chikungunya                 | Togaviridae  | Birds, mammals/ Aedes mosqui |
| California encephalitis     | Bunyaviridae | Small mammals/ Aedes mosqui  |
| La Crosse encephalitis      | Bunyaviridae | Small mammals/ Aedes mosqui  |
| Yellow fever                | Flaviviridae | Birds/ Aedes mosquito        |
| Dengue                      | Flaviviridae | Monkeys/ Aedes mosquito      |

| Colorado tick fever          | Reoviridae       | Tick                        |
|------------------------------|------------------|-----------------------------|
| Lymphocytic choriomeningitis | Arenaviridae     | Rodents                     |
| Lassa fever                  | Arenaviridae     | Rodents                     |
| Sin Nombre hantavirus        | Bunyaviridae     | Deer mice                   |
| Ebola                        | Filoviridae      | Unknown                     |
| Rabies                       | Rhabdoviridae    | Bats, foxes, raccoons, etc. |
| Influenza A                  | Orthomyxoviridae | Birds, swine, etc.          |


Laboratory diagnosis of viral disease


### Laboratory procedures for diagnosing viral infections

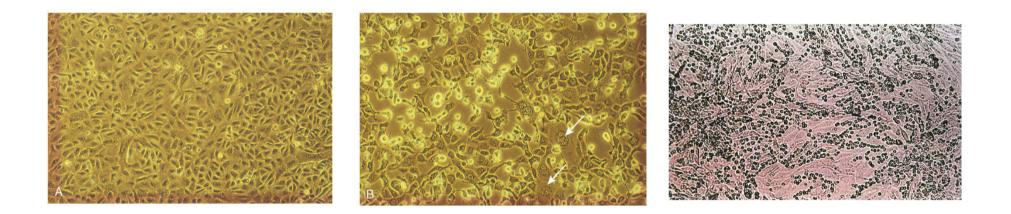
The laboratory methods accomplish the following results:

- 1. Description of virus-induced cytopathologic effects (CPEs) on cells
- 2. Detection of viral particles
- 3. Isolation and growth of the virus
- 4. Detection and analysis of viral components (e.g., proteins [antigens], enzymes, genomes)
- 5. Evaluation of the patient's immune response to the virus (serology)

# Cytology








Syncytium formation by measles virus

Cytopathologic effect by HSV

Negri bodies caused by rabies

# Viral cytopathologic effects



### Systems for propagation of viruses

People

Animals: cows (e.g., Jenner cowpox vaccine), chickens, mice, rats, suckling mice

Embryonated eggs

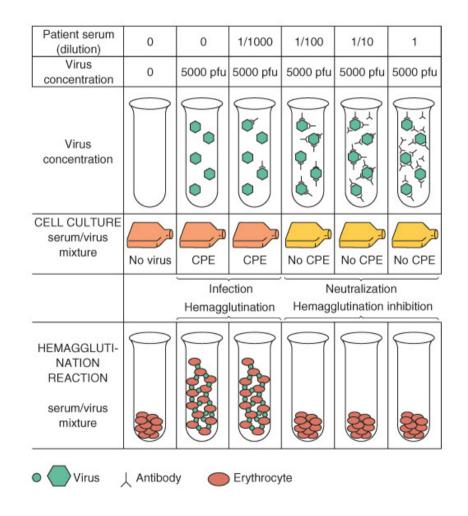
Organ culture

Tissue culture

Primary

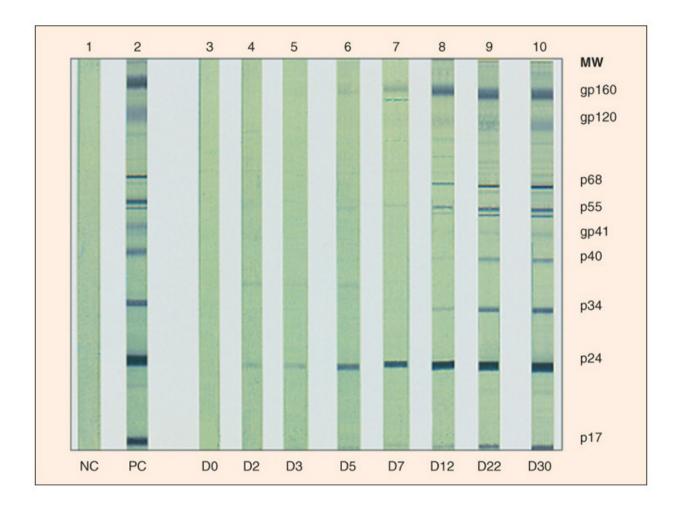
Diploid cell line

Tumor or immortalized cell line


### Titer

One can quantitate a virus by determining the greatest dilution that retains the following properties **(titer)**:

1. Tissue culture dose (TCD  $_{50}$ ): titer of virus that causes cytopathologic effects in half the tissue culture cells


2. Lethal dose (LD 50): titer of virus that kills 50% of a set of test animals

3. Infectious dose (ID  $_{50}$ ): titer of virus that initiates a detectable symptom, antibody, or other response in 50% of a set of test animals



### HA and HI test

# Western blot analysis



Antiviral agents and infection control

### Viruses treatable with antiviral drugs

#### Viruses Treatable with Antiviral Drugs

Herpes simplex virus

Varicella-zoster virus

Cytomegalovirus

Human immunodeficiency virus

Influenza A and B viruses

Respiratory syncytial virus

Hepatitis B and C viruses

Papillomavirus

Picornavirus

### Examples of targets for antiviral drugs I

| Replication Step or Target | Agent                                 | Targeted Virus                    |
|----------------------------|---------------------------------------|-----------------------------------|
| Attachment                 | Peptide analogs of attachment protein | HIV (CCR5 co-receptor antagonist) |
|                            | Neutralizing antibodies               | Most viruses                      |
|                            | Heparan and dextran sulfate           | HIV, HSV                          |
| Penetration and uncoating  | Amantadine, rimantadine               | Influenza A virus                 |
|                            | Tromantadine, docosanol               | HSV                               |
|                            | Arildone, disoxaril,<br>pleconaril    | Picornaviruses                    |
| Transcription              | Interferon                            | HCVs, papillomavirus              |
|                            | RNA polymerase                        | HCV                               |
|                            | Antisense oligonucleotides            | _                                 |

Thank you for your attention!!