
有趣的微生物世界

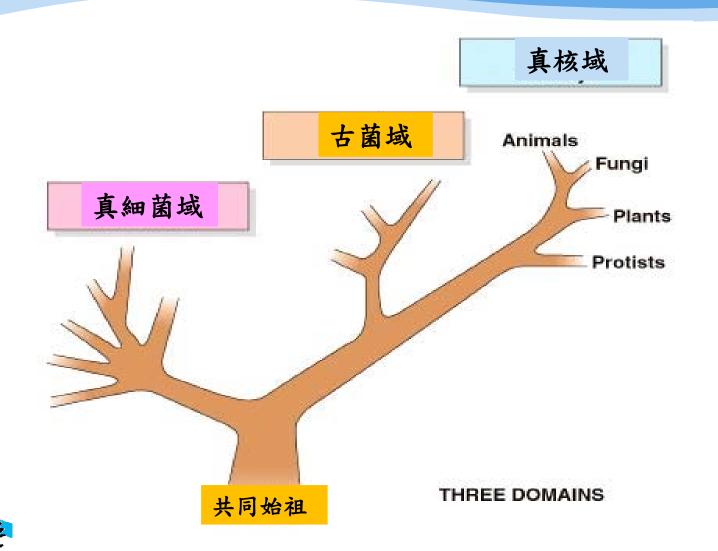
國立中山大學生物科學系 劉仲康 教授

1.00111110

內容

- 1 微生物之範疇與分類簡介
- 2 微生物之生長與培養
- 3 微生物在產業上的應用

微生物之範疇與分類

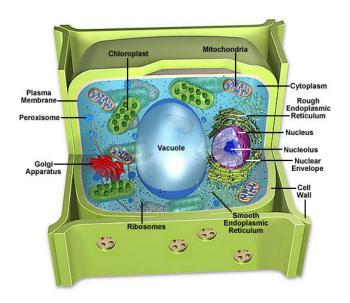


什麼是微生物?

- * 肉眼不易觀察, 而需藉助放大工具觀察的微小 生物
- * 微生物通常包括五大類生物:
 - 1. 細菌與藍綠細菌 (原核生物)
 - 2. 真菌 (真核生物)
 - 3. 藻類 (真核生物)
 - 4. 原生動物 (真核生物)
 - 5. 病毒 (無細胞構造)

三域 (Domain) 分類系統

原核與真核


- 1. 細胞核之有無
- 2. 膜構造胞器 (如粒線體,葉綠體) 之有無

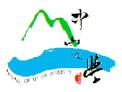
原核細胞

A Typical Prokaryote Cell

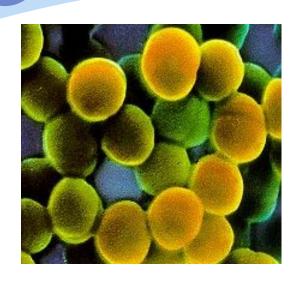
Cytoplasm Ribosomes DNA Cell Membrane Cell Wall

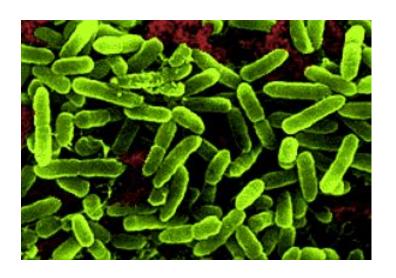
真核細胞

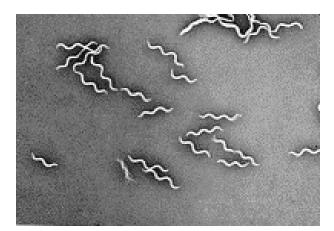
(一)細菌


針尖上的細菌

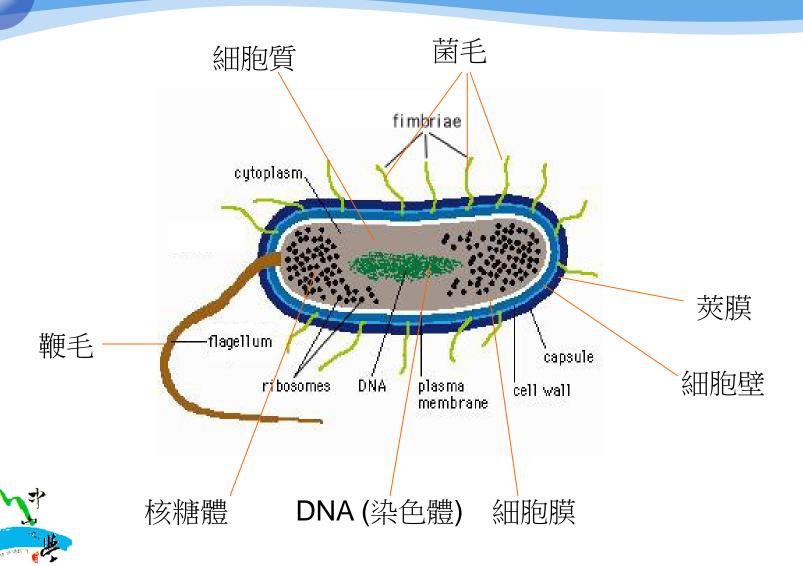
細菌一般大小:1~5 微米 (µm)

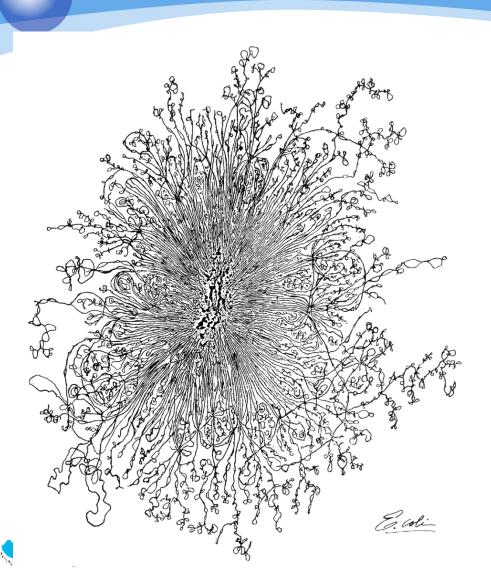


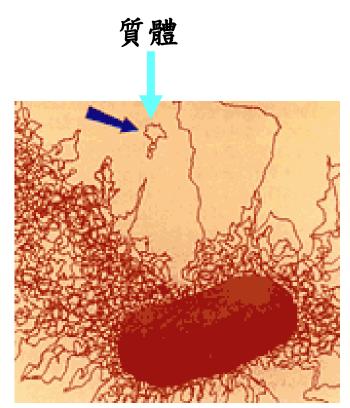




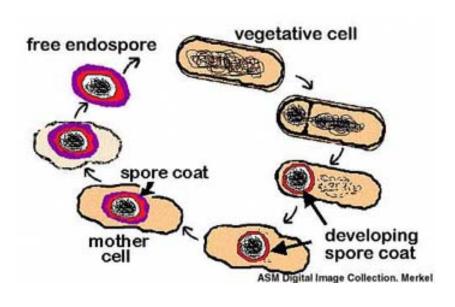
細菌—細胞形態

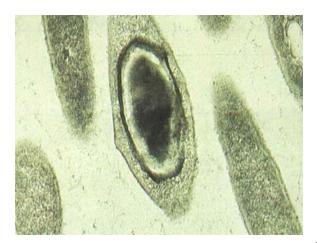






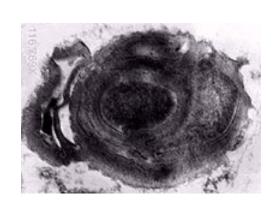
細菌一般構造


細菌 DNA



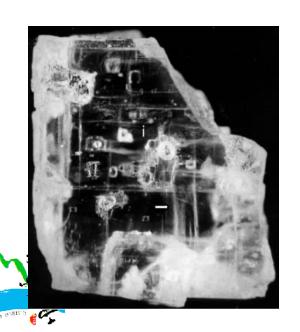
細菌一內孢子

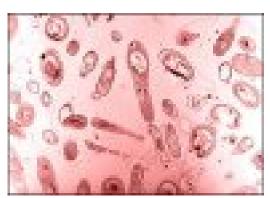
內孢子是對惡劣環境具有高度抵抗性的構造,僅發 現於少數格蘭氏陽性細菌

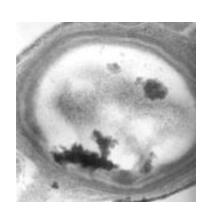

細菌一內孢子

内孢子是休眠狀態的構造

☀ 美國科學家Raul Cano自二千五百萬年前~四千萬年前的琥珀蜜蜂體內中分離出產內孢子的細菌







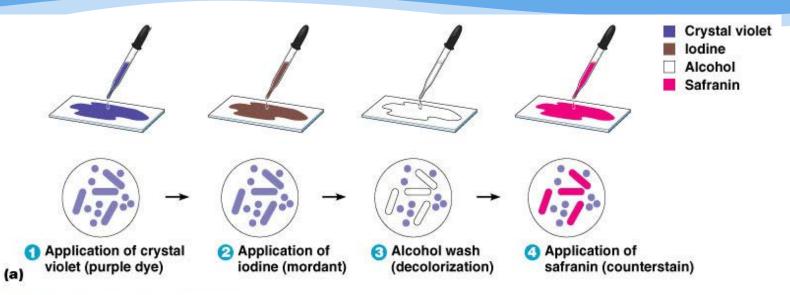
細菌一內孢子

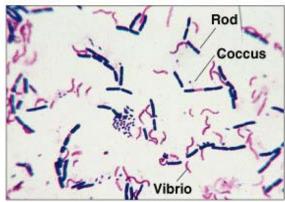
◆ 美國科學家Russell Vreeland 及 William Rosenzweig 自 二億五千萬年前的鹽塊結晶中分離出產內孢子的細 菌

細菌之染色與觀察

為何要染色?

- ❖細菌因體積微小,在光學顯微鏡下呈現無色,必 須染色才看得見
- ❖一些鑑別性染色方法,將不同類型細菌細胞染成不同顏色,可以最為鑒別之用(例如格蘭氏染色、抗酸性染色)




格蘭氏染色 (Gram Stain)

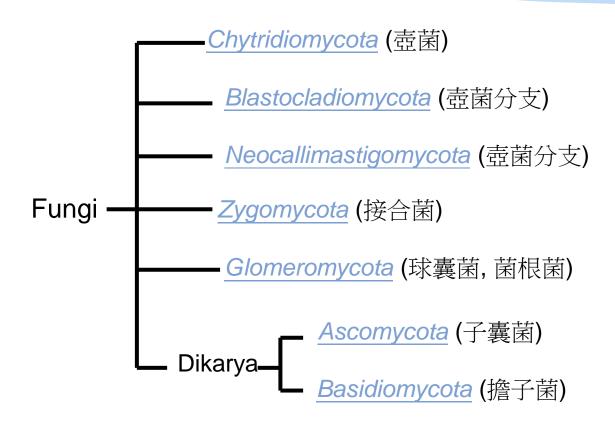
	Color of Gram + cells	Color of Gram – cells
Primary stain: Crystal violet (結晶紫)	Purple	Purple
Mordant: lodine (碘液)	Purple	Purple
Decolorizing agent: 95% Ethanol (酒精)	Purple	Colorless
Counterstain: Safranin (沙紅)	Purple	Red

格蘭氏染色步驟

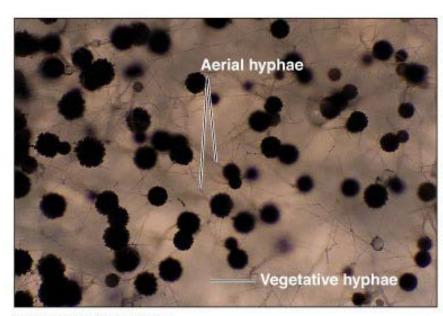
Copyright © 2004 Pearson Education, Inc., publishing as Benjamin Cummings.

細菌舉例

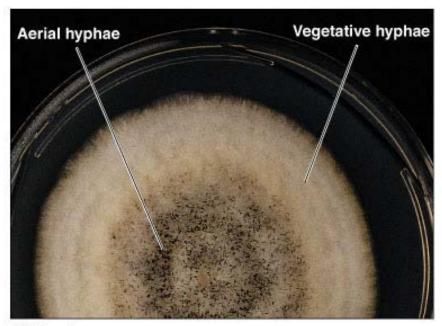
※格蘭氏陽性菌─肉毒桿菌、破傷風桿菌、金黃色葡萄球菌、枯草桿菌、乳酸鏈球菌…等


❖格蘭氏陰性菌 − 大腸桿菌、沙門氏菌、綠膿桿菌、克雷白肺炎菌…等

(二)真菌



菌物界(真菌界)

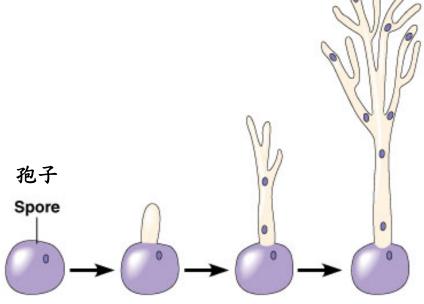


微菌 (Molds)

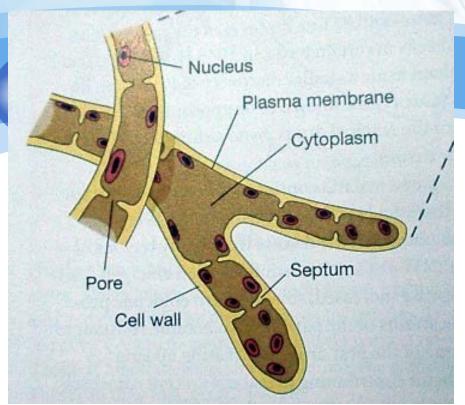
(a) Aspergillus niger

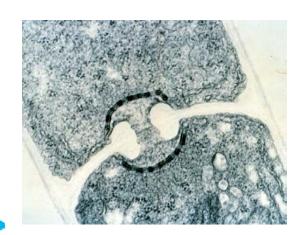
(b) A. niger on agar

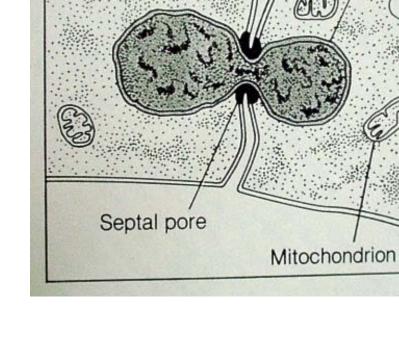
真菌菌絲



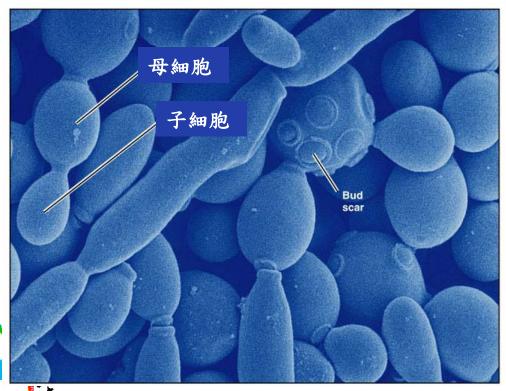
(a) Septate hypha

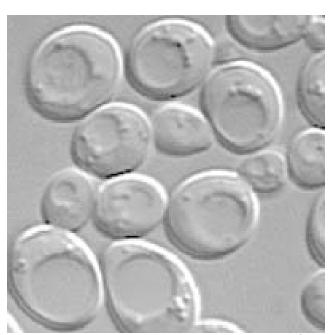

(b) Coenocytic hypha


Copyright © 2004 Pearson Education, Inc., publishing as Benjamin Cummings.



(c) Growth of a hypha from a spore

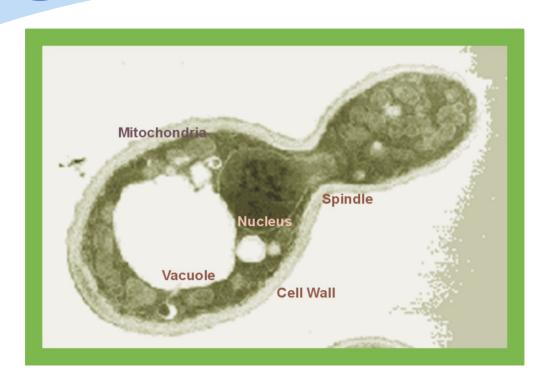




Nucleus

酵母菌

- 軍細胞真菌
- 細胞分裂繁殖
- 如子細胞大小相同時稱為對稱分裂
- 如子細胞一大一小,稱為出芽繁殖(不對稱分裂)(比較常見)

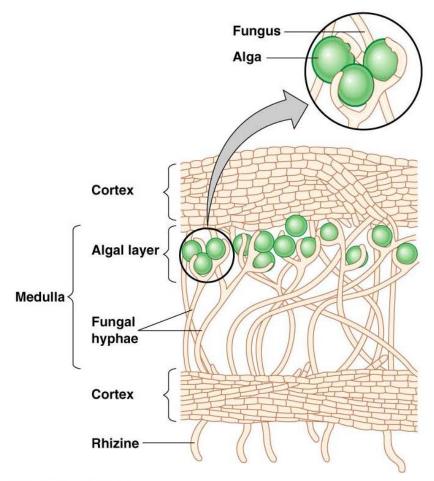


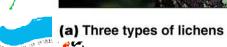
酵母菌生活史

雙套期 Anaphase I Anaphase II MEIOSIS ASCUS Dissection ZYGOTE YEAST LIFE CYCLE 單套期

酵母菌無性生殖 (細胞分裂)

酵母菌有性生殖 (子囊)

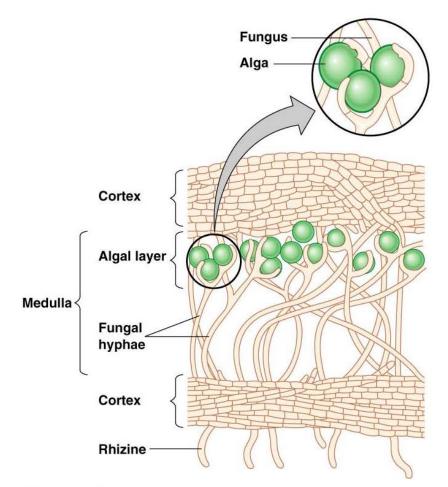

真菌舉例


- **❖單細胞真菌** ─ 酵母菌
- ◆黴菌─ 青黴菌、麴菌、黑麵包黴···等
- ❖子實體真菌─ 各種菇類、靈芝…等

地衣 (Lichen)

(b) Lichen thallus

2 cm


地衣

- 真菌與藻類或藍綠菌的共生體
- ●藻類進行光合作用提供能量(可達 60%以上)
- 真菌提供附著、水分吸收、礦物鹽、以及防護(乾燥)
- 分類上共有約 13,500 種
- 地衣對空氣品質非常敏感,可作為空氣品質的指標生物
- 形態上有三大類: 殼狀、葉狀、指狀

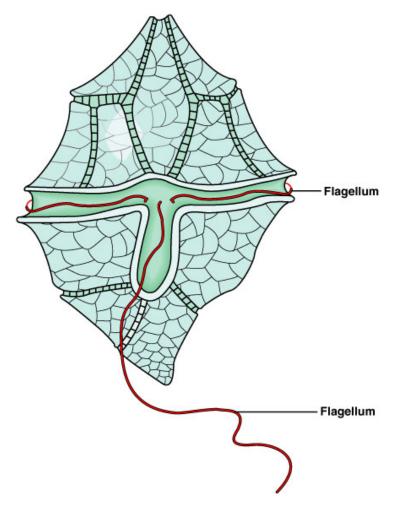
地衣

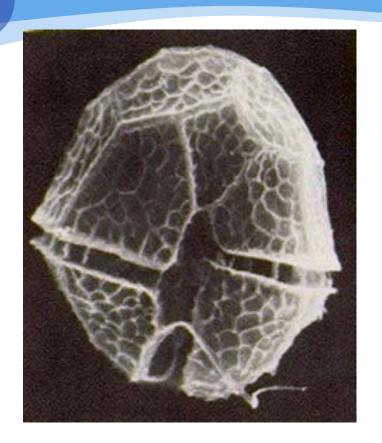
(b) Lichen thallus

2 cm

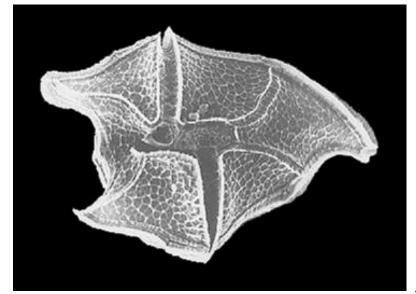
原生生物界 (Kingdom Protista)

- ●藻類 (algae)
- 原生動物 (protozoa)
- 原生菌類 (slime mold, water mold)

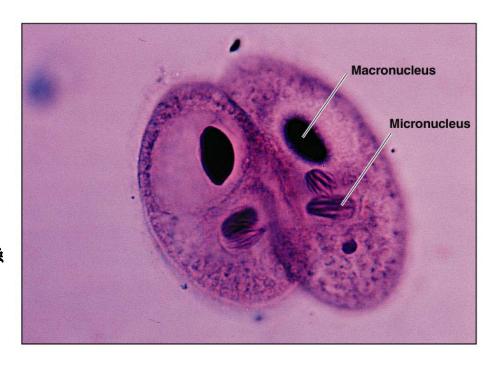

(三)藻類


TABLE 12.4	Characteristics of Selected Phyla of Algae						
\	褐藻	紅藻	綠藻	矽藻	渦鞭毛藻	水黴菌	
Phylum	Phaeophyta	Rhodophyta	Chlorophyta	Bacillariophyta	Dinoflagellata	Oomycota	
Color	Brownish	Reddish	Green	Brownish	Brownish	Colorless, white	
Cell Wall	Cellulose and alginic acid	Cellulose	Cellulose	Pectin and silica	Cellulose in membrane	Cellulose	
Cell Arrangement	Multicellular	Most are multicellular	Unicellular and multicellular	Unicellular	Unicellular	Multicellular	
Photosynthetic Pigments	Chlorophyll a and c, xanthophylls	Chlorophyll a and d, phycobiliproteins	Chlorophyll a and b	Chlorophyll a and c, carotene, xanthophylls	Chlorophyll a and c, carotene, xanthins	None	
Sexual Reproduction	Yes	Yes	Yes	Yes	In a few (?)	Yes (similar to the Zygomycota)	
Storage Material	Carbohydrate	Glucose polymer	Glucose polymer	Oil	Starch	None	

渦鞭毛藻(甲藻) (Dinoflagellata)


- 具有二根鞭毛
- 單細胞
- 含葉綠素 a 與 c, 胡蘿蔔素, 以及 黄嘌呤等色素
- 貯存澱粉
- 大量繁殖可造成紅潮(red tide)
- 可與海洋動物(如貝類)共生
- 製造神經毒素,可導致麻痺性貝毒症 (paralytic shellfish poisoning, PSP)

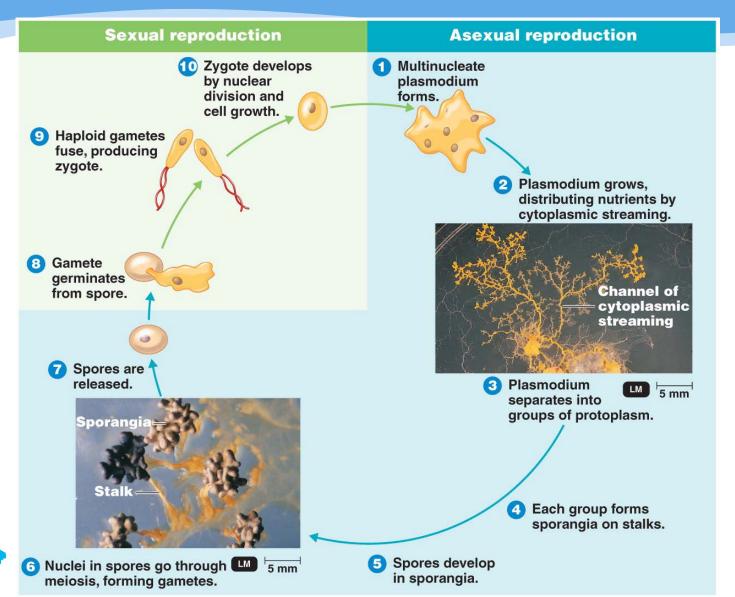
紅潮 (Red Tide)

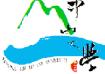


(四)原生動物

原生動物 (Protozoa)

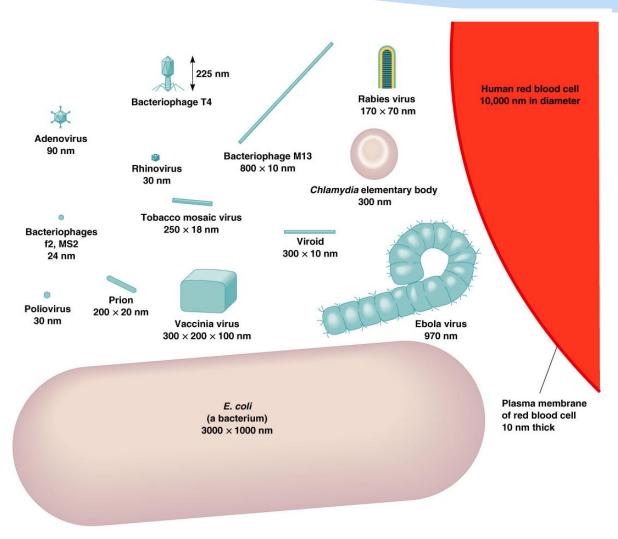
- 真核
- 單細胞化合異營生物
- 無性生殖:細胞分裂、出芽、或 裂體生殖
- 有性生殖:接合生殖
- 一些種類會產生囊胞(cyst)
- 舉例:草履蟲、變形蟲、瘧疾原蟲 、錐蟲…等




細胞黏菌 (Cellular Slime Mold)

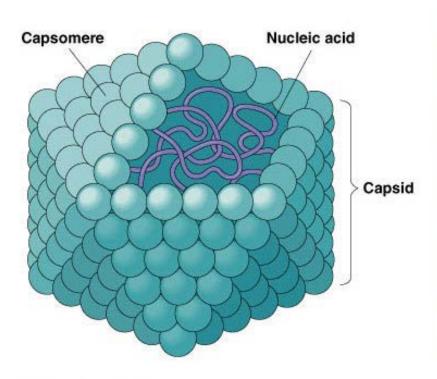
Asexual reproduction

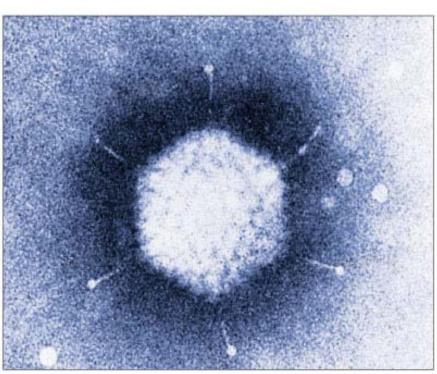
原蟲黏菌 (Plasmodial Slime Mold)



(五)病毒

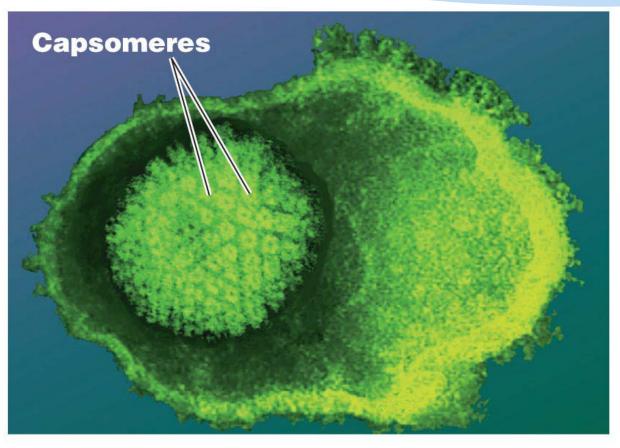
病毒 (Viruses)




病毒 (Viruses)

- 細胞內寄生
- 對宿主細胞具有高度的專一性
- 核心之遺傳物質可為DNA或RNA
- 外圍有蛋白質外殼
- 有些病毒在蛋白質外殼之外還具有膜狀的套膜

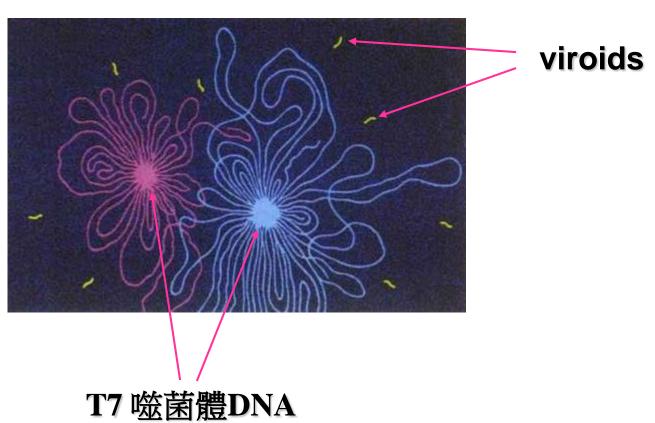
無套膜病毒 (裸病毒)(Naked Viruses)


(a) A polyhedral virus

Copyright © 2004 Pearson Education, Inc., publishing as Benjamin Cummings.

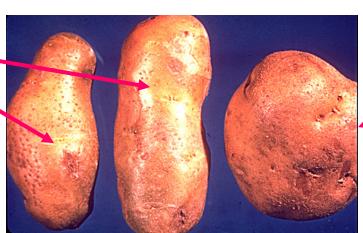
套膜病毒(Enveloped Viruses)

病毒與疾病

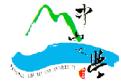

- ❖由於病毒為細胞內寄生性,因此可造成許多人類疾病
- ❖流行性感冒、B型肝炎、狂犬病、天花、愛滋病、 麻疹···等
- * 許多植物與亦會被病毒感染,造成疾病
- ❖細菌也會被病毒(噬菌體)感染

(六)類病毒

類病毒 (Viroids)



類病毒 (Viroids)

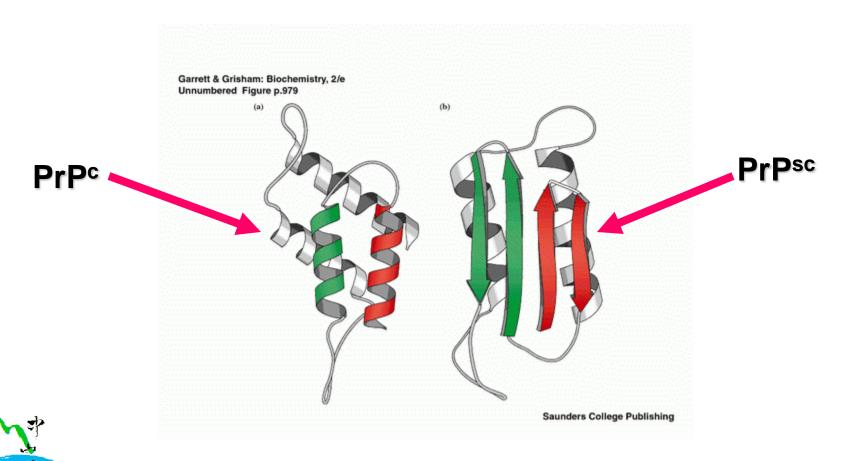


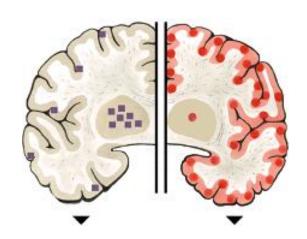
被感染的蕃茄

染病的馬鈴薯

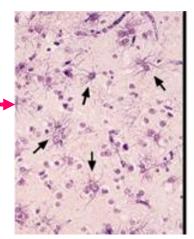
正常馬鈴薯

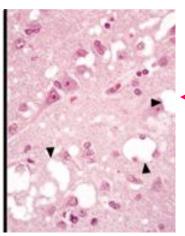
類病毒 (Viroids)


- 1. 單股環狀的 RNA 分子, 無蛋白質外殼, 核酸基因也不 製造任何蛋白質
- 2. 1961年首先自馬鈴薯紡錘狀塊莖疾病中發現
- 3. 1971年由 T.O. Diener 命名為類病毒 (Viroids)
- 4. 分子大小約為一般病毒的數千分之一
- 5. 只發現於植物,於植物細胞核內複製,造成植物疾病
- 6. 致病原因不明,可能係干擾宿主 mRNA 的形成
- 7. RNA序列與一些植物基因中的內含子(intron)高度吻合

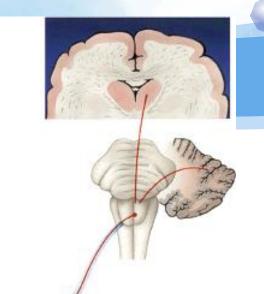

(七)普利昂蛋白體(朊毒體)

普利昂蛋白體 (Prion)




人類遺傳與老化發生之普利昂疾病

Fatal familial Insomnia (FFI, 致命性 家族失眠症)




Creutzfeldt-Jakob Disease (CJD, 庫賈氏 症)

感染途徑

人類若吃食含有狂牛病病原的 肉品,所導致的疾病則稱

為: "新型庫賈氏症"

古魯症(Kuru)

- 1. 頭痛
- 2. 喪失協調能力
- 3. 行走發生困難
- 4. 吞嚥肌肉麻痺
- 5. 依賴餵食
- 6. 死於營養不良

微生物之生長與培養

生物的生活型態

*以能量來源區分

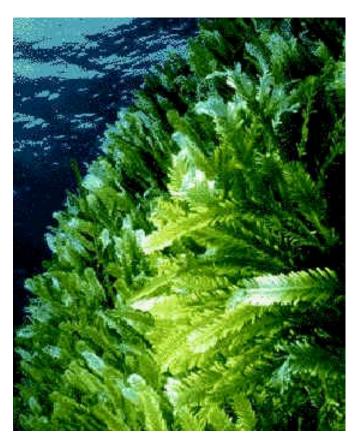
- 光合生物 (光能)
- 化合生物 (化學能)

* 以碳的來源區分

- 自營生物 (二氧化碳)
- 異營生物 (有機碳,例如葡萄糖與澱粉)

生物的生活型態

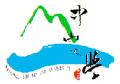
- ❖光合自營生物 例如植物,藻類
- ❖化合異營生物 例如動物, 真菌
- *光合異營生物 例如一些紫色光合細菌
- ❖化合自營生物 例如一些硫化菌, 鐵氧化菌等


光合自營生物

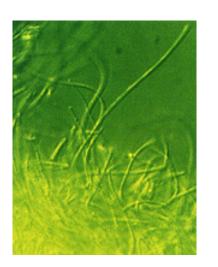
陽光

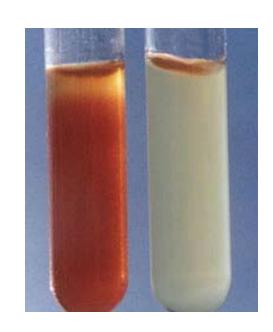
二氧化碳+水 葉綠素

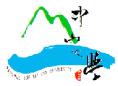
葡萄糖+氧氣


化合異營生物

- •自外界攝取有機物質
- ·分解有機物質,產生能量來推動各種 代謝反應
- ·例如所有的動物(包括人類),真菌,原生動物,大多數的細菌(包括所有的病原菌)等




光合異營生物


*可進行光合作用,將簡單有機碳化合物(例如甲醇,甲醛) 合成複雜的有機碳化合物

* 例如一些綠色光合細菌及紫

色光合細菌

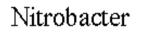
化合自營生物

Aerobic Lithotrophs (Chemoautotrophs)

氫細菌 — Hydrogen bacteria

$$H_2 + 1/2O_2$$
 \longrightarrow H_2O

$$H_2S + 1/2O_2 \rightarrow H_2O + S$$

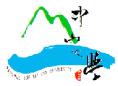

$$S + 1.5O_2 + H_2O \longrightarrow H_2SO_4$$

鐵細菌 ── Iron bacteria

$$2Fe^{+2} + 1/2O_2 + H_2O \longrightarrow 2Fe^{+3} + 2OH^{-1}$$

硝化菌 — Nitrifying bacteria

$$NH_3 + 1.5O_2$$
 \longrightarrow $HNO_2 + H_2O$


$$HNO_2 + 1/2O_2 \longrightarrow HNO_3$$

化合自營生物

生活在水中的鐵細菌

影響微生物生長的因子

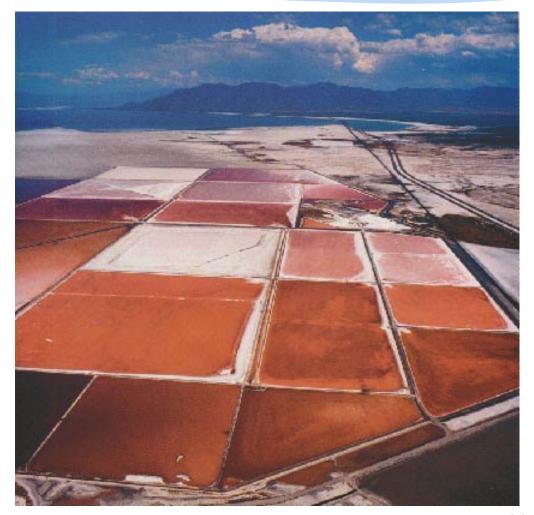
- * 物理性因子
 - 水分與滲透壓
 - ■酸鹼度
 - 温度
 - 氧氣濃度
 - 壓力
- * 化學性因子 各種元素, 營養分子, 生長因子...等

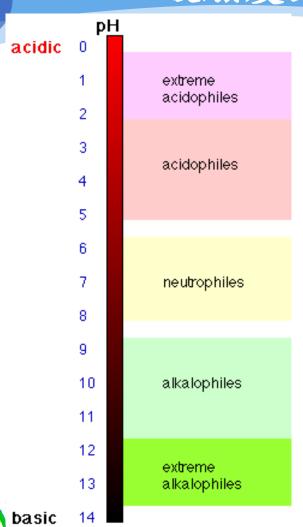
水分與渗透壓

- ❖ 等張溶液 (0.9% NaCl 溶液) 例如生理食鹽水
- ❖低張溶液 (< 0.9%) 例如蒸餾水
- ❖高張溶液 (> 0.9%) 例如濃食鹽水

水分與渗透壓

- 醃漬食物因為是高滲透壓,故可耐腐敗
- *水分含量低的食物也不利微生物的生長

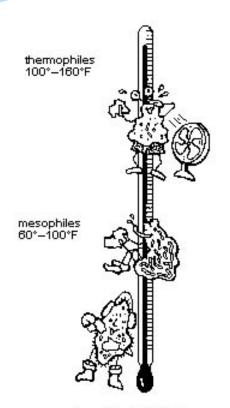



嗜鹽微生物 (Halophiles)

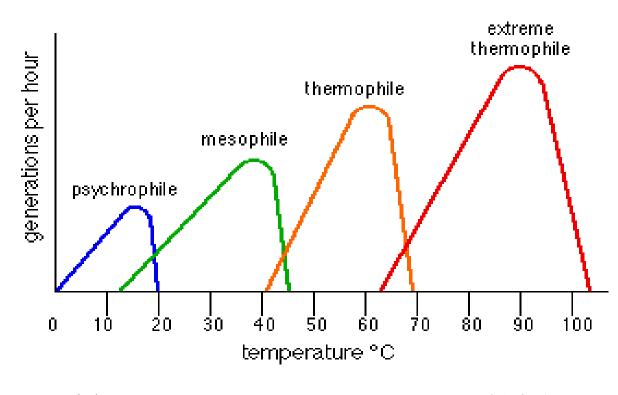
- 可耐高鹽度溶液(可達 23%~29%)
- 常見之於鹽田,死 海,大鹽湖
- * 常具有各種色素

酸鹼度對微生物生長的影響

- * 大多微生物生長於中性環境
- ❖耐酸菌與嗜酸菌
- ❖耐鹼菌與嗜鹼菌


極度耐酸微生物

*可生長於 pH 1.0 ~ 3.5 的酸性溫泉中 (溫度可達 70℃ ~ 85℃)



温度對微生物生長的影響

psychrophiles 26°-60°F

低溫菌

中溫菌

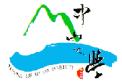
高溫菌

溫菌 煙度 心度

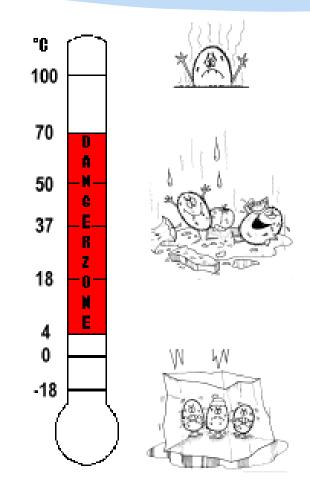
高溫菌的生長環境

溫泉

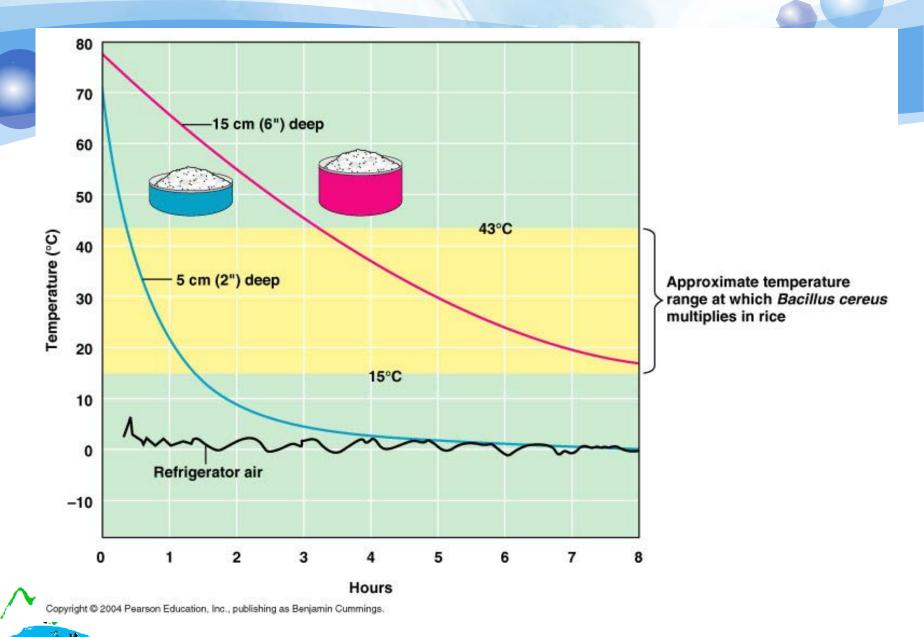
堆肥


高温菌的生長環境

海底熱泉 溫度可達 **130** ℃

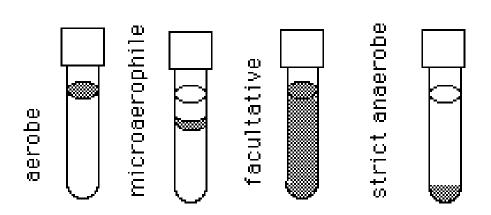


温度與微生物的生長繁殖


❖所有的人類病原菌都是中 溫菌

❖ 敗壞食品:

- 高度危險溫度 15~50 ℃
- 一般危險溫度 4~70 ℃



微生物對氧氣的需求

- *好氧
- ❖微好氧
- ❖厭氧
- ❖兼性厭氧

微生物生長所需的化學元素

❖ 巨量元素: 碳, 氫, 氧, 氮, 硫, 磷, 鉀, 鈣, 鎂, 鐵

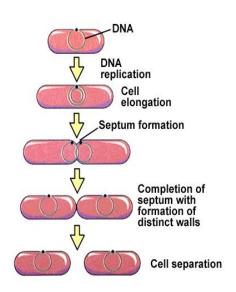
❖微量元素: 錳, 鋅, 鈷, 鉬, 鎳, 銅

❖特殊元素: 矽, 碘, 鈉 ... 等

微生物生長所需的營養

以化合異營細菌為例

- ❖ 碳水化合物 (如葡萄糖,乳糖,澱粉等)
- * 含氮物質
 - 有機氮 如蛋白質與胺基酸
 - 無機氦 如氦氣, 氨, 硝酸鹽等
- ❖ 維他命: 有些可自行合成, 有些則需自外 界攝取
- ❖ 其他生長因子: 如血清, 血液, 膽固醇等

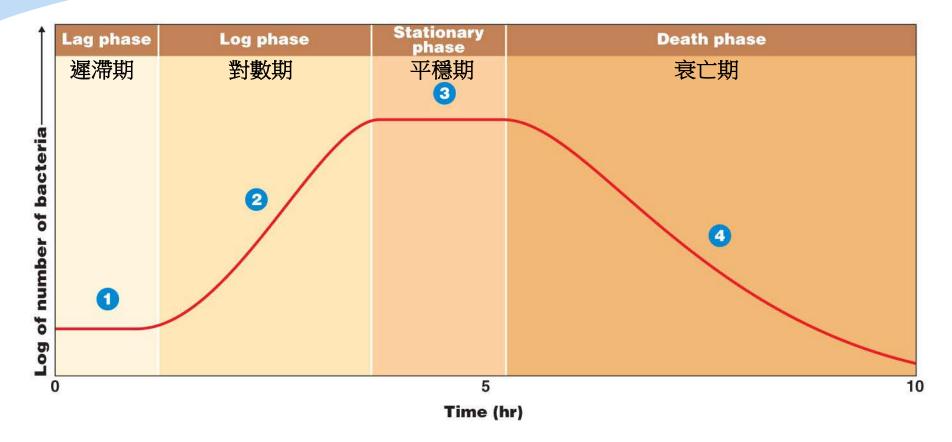


微生物的繁殖

- ❖二分裂法 (Binary fission)
- ❖出芽繁殖
- ❖孢子繁殖
- ❖菌絲增長與斷裂

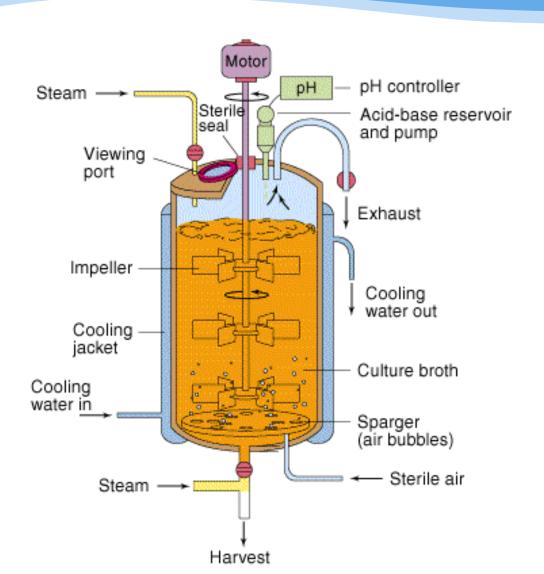
二分裂法

Number of cells
1
2
4
8
16
32
64
128
256
512
1024
2048
4096
- 557/4-70
1,048,576


二分裂法

細菌在適宜生長的條件下,十小時內可從一個細胞成長為一百萬個,十二小時超過一千萬個,十四小時則超過二億五千萬個

最終會因養分的缺乏與代謝廢物的累積, 生長速度會逐漸緩慢下來



細菌生長曲線

醱酵槽(生物反應器) (Fermenter)

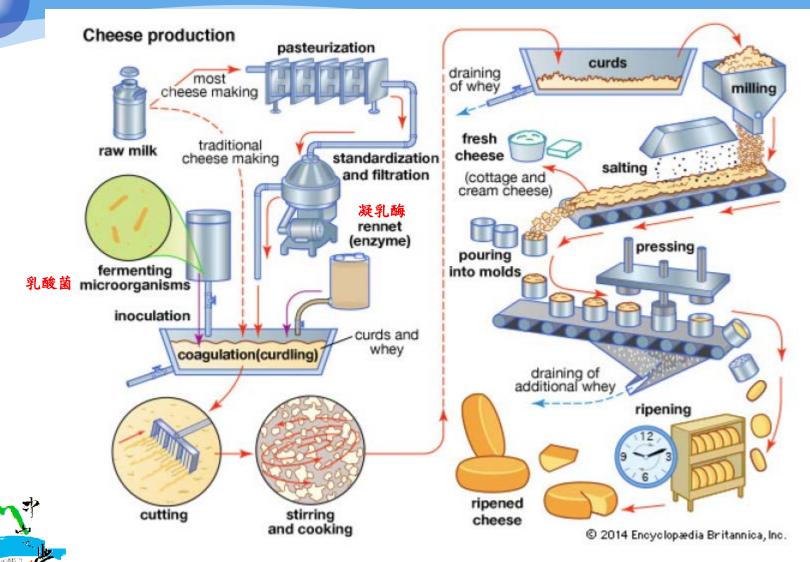
醱酵槽 (Fermenter)

微生物在產業上的應用

- 2. 微生物在發酵、能源、與農業上的應用
- 3. 微生物在環境與污染整治上的應用

食品保存方式

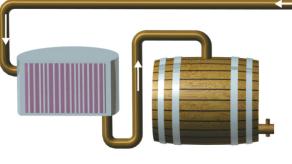
- 乾燥法
- 醃漬法
- 發酵法
- 化學添加物 (防腐劑與抗氧化劑等)
- 輻射線照射法
- 滅菌後真空無菌包裝
- 其他



微生物在發酵食品業上的應用

- *乳酸菌產品 起司 (cheese)、優格 (yogurt)、發酵乳、酸泡菜、酸黄瓜等
- 酵母菌產品 麵包、發麵麵製品(包子饅頭)、各式酒精發酵飲料(酒、啤酒)
- ◆ 其他 ─ 醬油、醋、豆辦、醬、味噌、納豆、天貝、 魚露....等

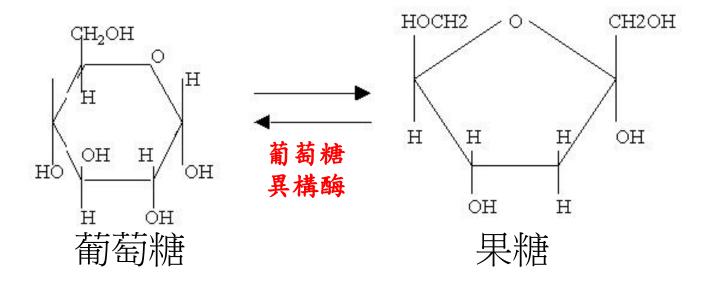
起司製造流程


果酒釀製

- Grapes are tested and picked.
- Sulfite is added to 亞硫酸殺菌 kill undesirable 與保色 yeasts and bacteria.

- Result is pressed to separate solids from wine.
 - Wine is clarified in settling vats.

Wine is bottled.


生物轉換法 (Bioconversion)

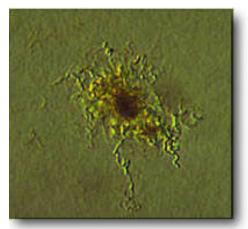
- 1. 利用微生物或酵素, 將某一化合物修飾轉換為另一化 合物的方法
- 2. 效率極高,可同時進行多個生化反應步驟
- 3. 可採用固定化細胞與酵素方式來進行
- 4. 舉例—果糖的合成、維他命C的合成、類固醇 prednisone 的生化合成....等

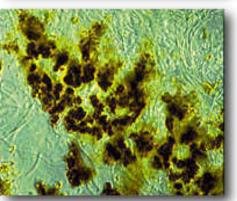
果糖的生產 (生化轉換法)

微生物之重要工業應用

- ※ 胺基酸
- ❖檸檬酸
- * 各種酵素
- *維他命
- ❖藥物(抗生素等)
- ❖生物採礦(銅、重金屬、貴重金屬)
- ❖微生物生質(單細胞生質)
- ❖其他:類固醇,微生物膠....等

重要工業酵素應用舉例


- 1. 蛋白質水解酵素—清潔劑、洗衣粉、乳酪製造、皮革軟化、 食品成分轉化....等
- 2. 澱粉水解酵素-生產葡萄糖、糖漿、麵粉品質改良
- 3. 纖維分解酵素—飼料與紙漿製造、紡織業
- 4. 同分異構酵素—將低價位或無活性的分子轉化為高價位產品,例如果糖
- 5. 油脂分解酵素—洗衣業、皮革業、改善麵粉品質、增進 cheese 風味
- 6. 氧化還原酵素—工業應用例子不多,可防止食品褐變、去除 殘餘雙氧水、染料呈色....等



微生物在礦物開採上的應用

微生物採礦 (Microbial Mining)

- 1. 吸附與濃縮一些貴重金屬,造成礦脈
- 2. 溶解、還原、析出
- 3. 亦可應用於金屬污染整治

微生物在礦物開採上的應用

微生物採礦 一 以銅的開採為例

- 1. 直接萃取法: $CuS + 2 O_2 \longrightarrow CuSO_4$
- 2. 間接萃取法:

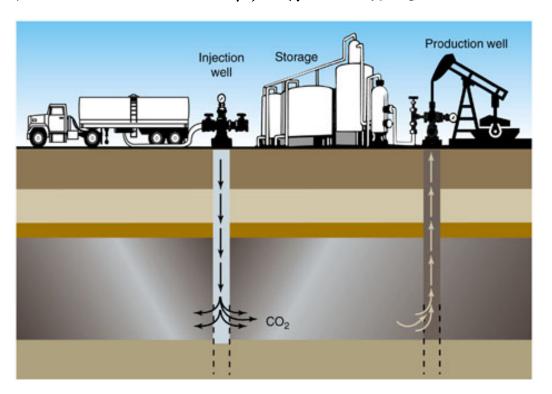
$$4 \text{ FeS}_2 + 15 \text{ O}_2 + 2 \text{ H}_2\text{O} \longrightarrow 2 \text{ Fe}_2(\text{SO}_4)_3 + 2 \text{ H}_2\text{SO}_4$$

$$CuS + Fe_2(SO_4)_3 \longrightarrow CuSO_4 + 2 Fe(SO_4) + S$$

3. 收集 CuSO₄ , 再將銅元素電解析出

微生物在礦物開採上的應用

Leaching: Fe³⁺ in acidic leaching solution oxidizes insoluble copper sulfide (Cu⁺) to soluble CuSO₄ (Cu²⁺). Copper for **Pregnant** industrial uses (metal-bearing) Fe⁰ (metallic Leach dump of solution, CuSO₄ scrap iron) copper sulfide ore Oxygen in aerated pond Barren solution, Oxidation pond: 2 CuSO₄ precipitates as no copper, iron copper (Cu⁰); Fe³⁺ is changed to FeSO₄ (Fe²⁺). T. ferrooxidans oxidizes as FeSO₁ $FeSO_4$ to $Fe^{3+} + H_2SO_4$ (acidic leaching solution).



微生物在石油開採上的應用

Micorbe-Enhanced Oil Recovery (MEOR)

將微生物製造的膠質注入油井四周,改變石油黏度,促使石油由吸附的岩石上流入油井,增加油產量

單細胞蛋白質(Single Cell Protein)

- 1. 單細胞微生物的細胞體(或稱為生質, biomass) 如酵母細胞、藻類細胞....等
- 富含蛋白質、礦物質、維他命、或其他營養成分, 可直接作為食品與動物飼料添加物
- 3. 可用廉價物質來生產,如農業廢棄物
- 4. 注意生物毒素的去除問題
- 5 含高量核酸問題

單細胞蛋白質(Single Cell Protein)

健素糖

酵母粉

螺旋藻粉

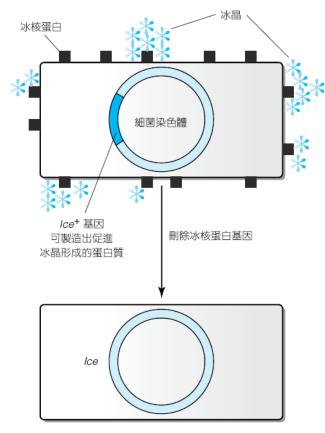
微生物在農業上的應用

- 1. 抗凍菌的應用 預防作物霜害
- 2. 微生物殺蟲劑 細菌、病毒、黴菌
- 3. 線蟲的防治 —
- 4. 固氮菌的應用 增加土壤肥力
- 5. 水產養殖上的應用 疾病防治、水質控制
- 6. 其他

微生物在農業上的應用

抗凍菌 (Ice-Minus bacterium)

- 1. 一株基因改造的 Pseudomonas syringae 菌株
- 2. 一般植物在0℃~2℃下結冰
- 3. Pseudomonas syringae 是植物的正常表生菌
- 4. 以分子生物學法破壞其冰核蛋白基因功能
- 5. 基因改造後的菌株無法產生冰核蛋白,植物需達到-6℃~-8℃方結冰
- 6. 可應用於草莓及柑橘等作物

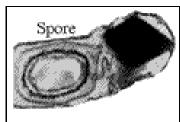


微生物在農業上的應用

抗凍菌 (Ice-Minus bacterium)

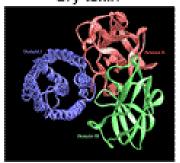
美國AGS公司產品

- 無冰核蛋白基因
- 無表面冰核蛋白
- 無冰晶的形成


微生物殺蟲劑(細菌製品)

蘇力菌 (Bt)

Bacillus thuringiensis

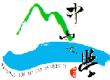


Gram-positive, spore-forming soil bacterium

Produce insecticidal crystal proteins (δ-endotoxins) during sporulation

Cry toxin


Most Bt strains can synthesise more than one crystal, which may be formed by different Cry toxins



微生物殺蟲劑 (細菌製品)

蘇力菌 (Bt)

微生物在水產養殖上的應用

- 疾病防治 利用與病原菌相拮抗或相剋的原理, 例如虱目魚紅斑病可用病毒來防治
- ኞ養殖水質控制 ─ 利用各種生物製劑改良水質
- * 仔稚種苗的餌料 各種微細藻類與浮游生物

微生物與能源 — 酒精

❖原料:

- 1. 傳統原料 蔗糖、蔗糖汁、糖蜜、玉米澱粉
- 2. 近代開發 木薯粉、馬鈴薯、草木纖維

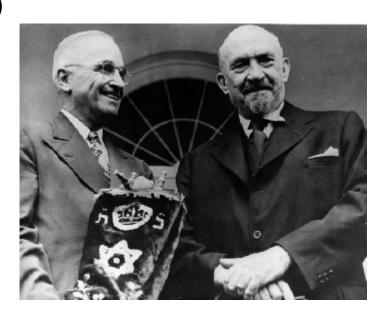
❖菌種:

- 1. 轉化多醣為單糖 以黴菌為主
- 2. 酒精發酵菌株 酵母菌以及其他耐高溫菌種

How Cellulosic Ethanol is Made

汽油醇 (Gasohol)

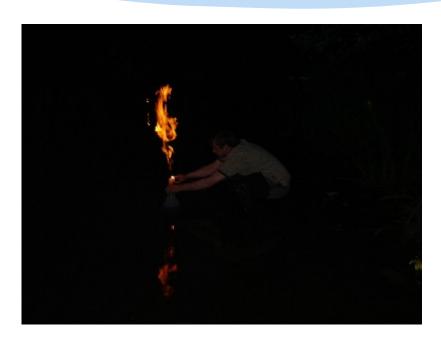
- ❖酒精(乙醇) 透過微生物發酵醣類、澱粉、或植物纖維產生
- * 需經蒸餾濃縮方可成為燃料
- ◆Gasohol (汽油醇) 汽油中 添加乙醇
- ❖ Gasohol 產生的動力比汽油低, 但是較清潔
- *巴西與美國實施最成功


使用Gasohol之優點

- 減少對石油的依賴
- 減少 CO 及 NOx 的排放
- 減少氧化性硫化物的排放(酸雨)
- 減緩 CO₂ 在大氣中的累積
- 降低溫室效應
- 減少汽油中苯(Benzene)的釋放
- 降低罹癌風險

微生物與能源 —丁醇—丙酮

- 原料: 糖蜜、玉米 (澱粉與玉米軸、莖)
- 菌種: 細菌 Clostridium acetobutylicum (德國人 Chaim Azriel Weizmann 於1916年首先發現)
- 發酵與溶劑回收(分液與蒸餾)


丁醇做為燃料的優點

- 丁醇產生之動力較汽油高
- 可100%使用於一般汽車引擎
- 不傷害引擎
- 燃燒完全,廢氣比汽油少
- 水溶性低,受氣候影響程度比酒精低
- 隨醱酵生產技術之改進,未來價格可更具競爭性

微生物與能源 — 甲烷

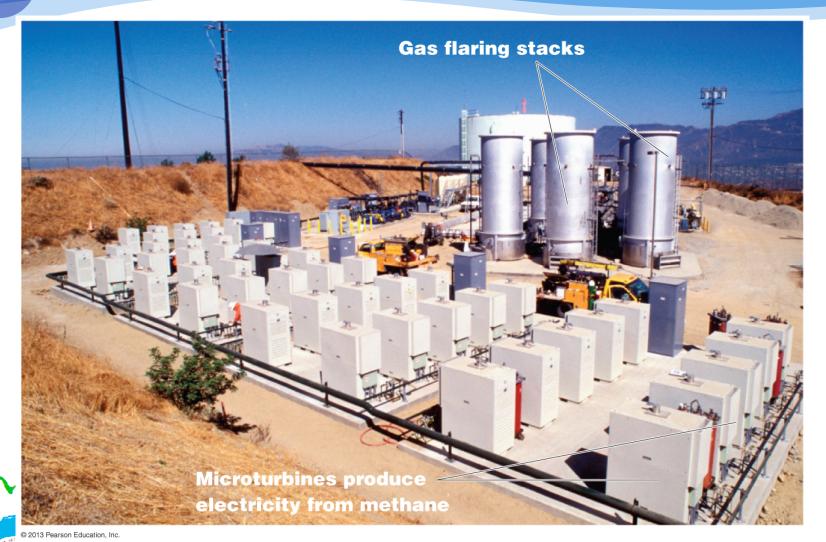
- 駅氧細菌分解有機廢物時可釋放出富含甲烷氣體(Biogas)
- Biogas 可用來燃燒或 發電作為能源

Volta fire

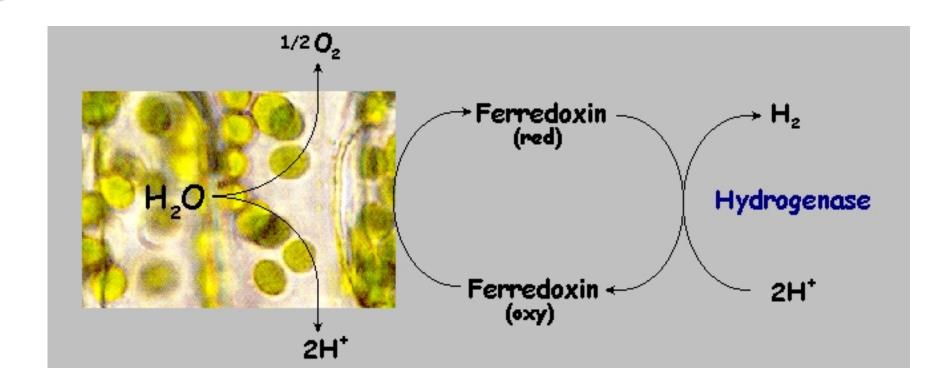
微生物與能源 — 甲烷

Biogas 來源

- ❖沼澤
- *家畜糞便
- *家庭污水
- ❖垃圾掩埋場



利用掩埋場甲烷發電

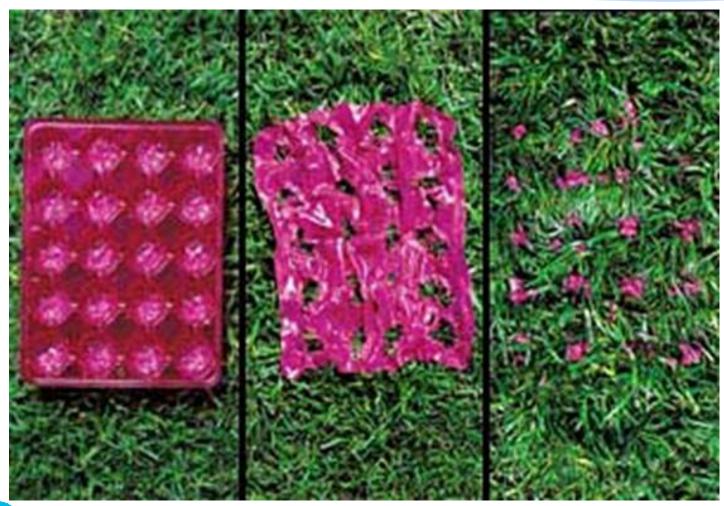


微生物與能源 — 氫氣

- ※原料: 光合作用 、或是直接供應糖類
- ❖ 菌種: 具有氫化酵素 (hydrogenase) 的微生物,如細菌 Clostridium butyricum,藻類 Chlorella pyrenoidosa 等
- *為最清潔的燃料
- ❖目前仍在研發階段

利用藻類產製氫氣

微生物與塑料

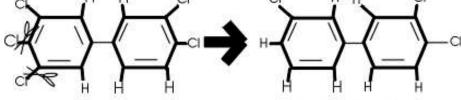

夢原料: 一般微生物培養基

☀ 菌種: 可產生 polyhydroxybutyrate (PHB) 顆粒或

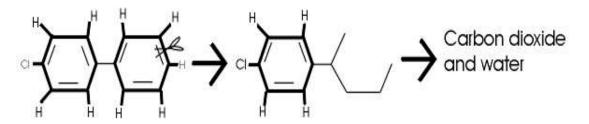
polyhysrovalerate (PHV) 顆粒的細菌

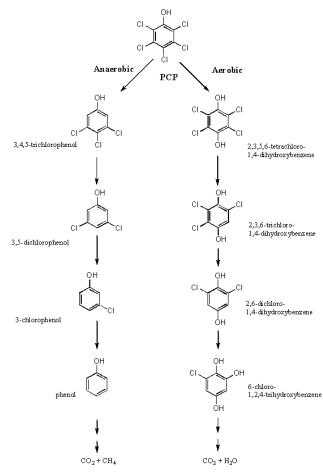
* 聚合塑膠可被生物分解

生物可分解塑膠在環境中分解為CO₂和 H₂O


- ☀ 有毒廢棄物的分解 例如PAHs, PCBs, PCP, Dioxin等
- ₩ 油污分解
- ☀ 有機堆肥
- ₩ 廢水處理
- *****生物製劑
- ♯指標微生物

有毒汙染物的分解


Microbial degradation pathways for PCP



Dechlorinated product

→ Aerobic bacteria

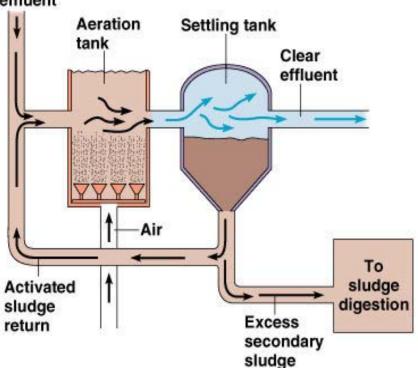
Aerobic Bacteria break phenyl ring

油污的分解

圖 5-11

生物復育法處理愛可森瓦得茲 (Exxon Valdez)油輪意外所 造成的阿拉斯加海岸石油污 染。未處理的海灘覆滿了石油 (左),但以肥料 (Inipol) 處 理不久後,鵝卵石床上沉積的 石油已大為減少(右)。

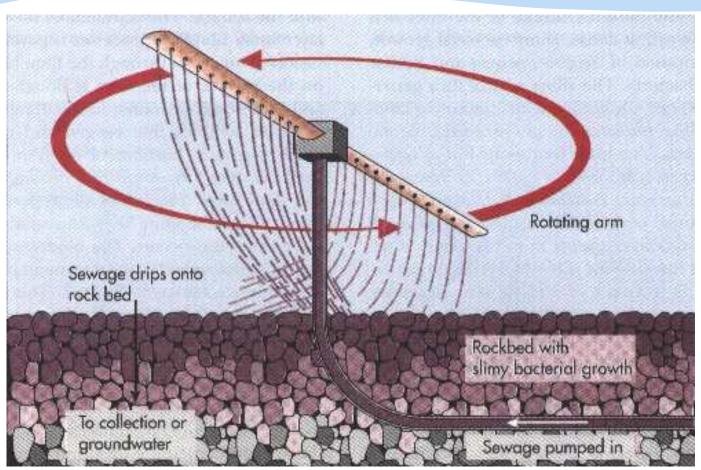
化腐朽為神奇的有機堆肥

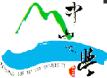

廢水處理

- 1. 活性污泥
- 2. 滴濾槽
- 3. 生物旋轉膜盤
- 4. 厭氧分解槽
- 5. 其他

活性污泥系統 (Activated Sludge System)

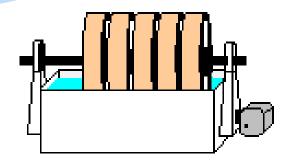
Primary sewage effluent


(a) Diagram of an activated sludge system



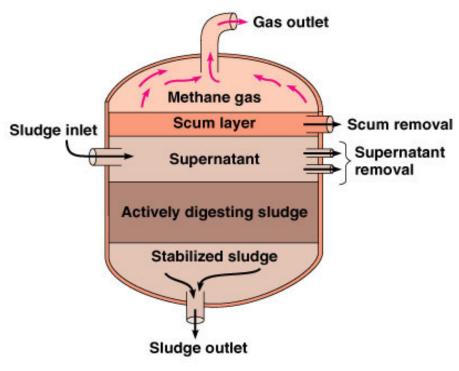
(b) An aeration tank. Note surface is frothing from aeration.

滴濾槽法 (Trickling Filter Tank)


滴濾槽法 (Trickling Filter Tank)

生物旋轉膜盤 (Rotating Biological Contactor)

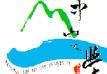




厭氧分解槽 (Anaerobic Sludge Digester)

$$CO_2 + 4 H_2 \rightarrow CH_4 + 2 H_2O$$

 $CH_3COOH \rightarrow CH_4 + CO_2$

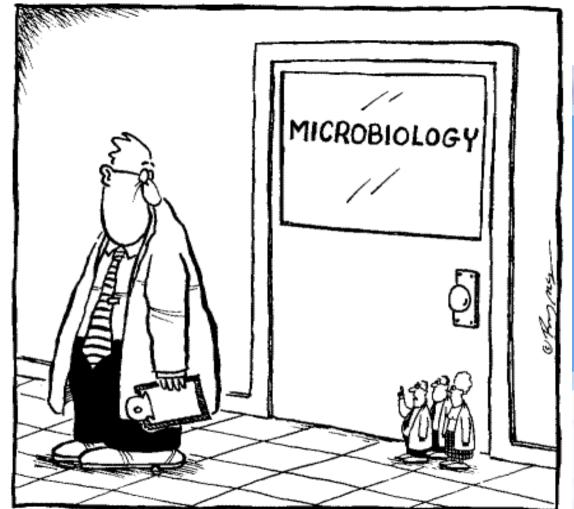


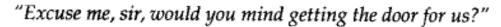
厭氧分解槽 (Anaerobic Sludge Digester)

生物製劑

- 1. 利用微生物配方添加到廢棄物、廚餘、或污水處理 系統,加速處理效果
- 2. 亦可應用於污染現場的整治,如土地、河川、湖泊、水庫、海岸、地下水,也有人應用於養殖池水的水質控制

各種市售生物製劑




結語

- ◆微生物在地球上存在的歷史悠久
- ◆微生物在生物圈的分布極廣泛
- ◆微生物對環境的適應性是多樣的
- ◆ 微生物在生態平衡上扮演重要的角色
- ◆ 許多微生物雖然可造成人類的疾病, 但是也有許多微生物是對人類有益的
- ◆ 微生物雖然體積微小, 但是卻與我們日常生活息息相關
- ◆ 微生物在近代生物科技的研發與生產上也是極重要的

家都來當微生物。

